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Abstract: The theory of Coxeter groups is surveyed. The three related topics referred to in the title are

Tits geometries, computational Lie group theory, and Hecke algebras.

1. Outline

Coxeter groups satisfy a number of amazing properties and play an important réle in
various branches of mathematics such as the theories of lattices, Lie groups and geometries,
finite groups and graphs. We shall first develop the basic theory of Coxeter groups, along the
lines of [Bourb 1968]. In particular, we shall discuss their faithful reflection representations,
root systems, and the determination of all finite Coxeter groups.

Our next topic will be geometry. The defining presentation of a Coxeter group W gives
rise to a Cayley graph, which is usually called apartment. Quotients of this graph (which are
proper graphs in the sense that the edges have no labels) represent the ‘natural geometries’
attached to W. Some of the simplest of these geometries are the polygons, the simplices
and the hypercubes; they are important because of their ubiquity in the geometries related
to groups of Lie type, the so-called buildings. The presentation of this part will be largely
based on [BCN 1989] and [BuCo 1990].

The second related topic concerns computational aspects. From an algorithmic point of
view, the Coxeter groups are among the easiest examples of groups presented by generators
and relations to deal with; still they represent considerable problems. For instance, although
the word problem is solvable, and despite some recent partially successful attempts, no
‘efficient’ set of rewrite rules has been found in the general case. These algorithms are of
use in studying Lie group representations; we shall indicate how.

We finish by briefly touching upon a third related topic: Hecke algebras. They link
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the Coxeter groups with representation theory of algebraic groups and geometry related
algebras. We provide the elementary definitions and give some references to the literature.

2. Basic definitions

A Coxeter matrix of rank n is an n X n matrix M = (m;j)1<i,j<n With m;; =1 and
m;; = mj; > 1 (possibly oo) for all 4,5 € {1,...,n} with ¢ # j. The Coxeter group
associated with the Coxeter matrix M is the group generated by elements p; (i =1,...,n)
subject to the relations

(pips)™ = 1.

It is denoted by W (M) or just W. Furthermore, we set I = {1,...,n} and R={p; |1 € I}
(both sets will be assumed finite throughout). The pair (W, R) is called the Coxeter system
of type M. The number n is called the rank of the system (or group).

It is common practice to provide a pictorial presentation of M by means of the labeled
graph (I, M) with vertex set I; the pair {3,j} is an edge whenever m;; > 2; this edge is
labeled m; ;. If m;j = 3, the label is often omitted.

Three very important tools in the study of a Coxeter group are the monoid of words in
the generators, the length function and the chamber system. They can be defined in great
generality:

Let I be an index set and W any group generated by a set B = {p; | ¢ € I} of
involutions. The free monoid on the alphabet I with unit (usually denoted by €) is denoted
by I* and p : I* — W(R) stands for the monoid morphism determined by p(i) = p; (i € I).

There is a natural notion of length for an element of I*; the length of the empty element
is 0, the length of an element of the alphabet I equals 1, and so on. A typical element of
I* will be written as i and its length as I(i). Thus, if I(i) = ¢, there are i; € I (1 < j < ¢q)
such that i = 4;.--i4. The length of an element w € W, denoted by Il(w), or Ir(w) if
more precision is required, is min{I(i) | p(i) = w}. For each element i = 4;---iy € I* with
p(i) = w, we call the product p(i1) - - - p(iq) an expression of w. If ¢ = I(w), the expression
is called reduced. For arbitrary groups W, the restriction of p to I need not be injective;
but for Coxeter groups W, it is (cf. Corollary 4.3).

The chamber system associated with (W, R), denoted by C(W, R) or just C, is the labeled
graph whose vertex set is W and in which the edges labeled r (for » € R) are all {w,wr}
for w € W. Its (label preserving) automorphism group contains W via left multiplication.
Observe that the graph-theoretic distance between the ‘chambers’ w,w' € W of C equals
I(w=!w'). The above definition of chamber system comes close to what is known as a
Cayley graph, but the present choice of name is in accordance with the more general notion
of chamber system to be treated in §7.

3. Examples
For the time being, let (W, R) be a Coxeter system of type M on n = |R| generators.
3.1 First Examples (i) If n =1 then W = {1} UR = Z/(2), the group of order 2.

(i) f n = 2, then W & (r,s | 2 = §2 = (r5)™ = 1) = Dihay,, the dihedral group of order
2m, where m = m; 2. In this case, we usually write M = IJ".
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(iti) The symmetric group Sym,,,; on n + 1 letters is the Coxeter group W(A,) where
Ap= 0—r-—0—- 0+ttt rr0——— 0,
1 2 3 n—1 n
The evident morphism W — Sym,, | sending p; to (i,i+1) for each 7 € I is an isomorphism.
This will follow from later developments, but can also be proved by establishing by induction
on n that {p1,...,pn-1) = W(An_1) & Sym,, and that each element of W(A,)\ W(A4n-1)
can be written as wp,w' for certain w,w’ € W(An_1).

(iv) If I = I; U I, is a partitioning of (I, M) into disjoint graphs (here disjoint means: if
m;; = 2 whenever i € Iy and j € L), then W(M) = W(M;) x W(M,), where M} is the
restriction of M to I x Iy (k = 1,2). This explains why, in addressing many questions
concerning Coxeter groups, we can restrict to the case where M is connected.

M Up:(I,M)—1,M)= (mm)”Er is a surjective morphism of Coxeter diagrams such
that m; ,; divides m; ; for all 4,5 € 1, then there is a surjective morphism, also denoted by
p, from W to W(M) such that up; = pui- The partlcular case where M has only one vertex
leads to a surjective morphism W — Z/(2). This map is known as the sign character; its
kernel consists of all elements of even length.

The origin of Coxeter’s interest in the groups bearing his name lies in the study of
reflections in n-dimensional Euclidean space A(V) corresponding to the real vector space
V. A reflection in A(V) is an affine transformation of the form z +— z — (z — b,a)a for
a,b € V with (a,a) = 2. Here, (-,-) stands for the Euclidean inner product. The hyperplane
{z € V| (z,a) = (b,a)} is the so-called reflection hyperplane of the reflection. If b = 0, the
reflection is a linear transformation and the vector a spans its —1-eigenspace.

If a group G acts on a set E, then a nonempty subset P of E is called a prefundamental
domain for Gif PNgP = { for all g € G, g # 1. Thus, the existence of a prefundamental
domain for G implies that the action of G on E is faithful. Observe that a prefundamental
domain need not quite be what is classically called a fundamental domain as it is not required
that the domain be connected or contain a member of each G-orbit in E.

We are now ready to formulate a generalization of Coxeter’s basic observation [Cox 1934]
that Coxeter systems provide presentations for certain groups generated by reflections.

3.2 Theorem (cf. [Bourb 1968]) Let {H;}icr be a family of affine hyperplanes of the real
affine space E. For each i € I, let A; denote one of the two open half-spaces determined
by H;. Assume that A = ﬂie! A; # 0. Furthermore, for each i € I, let o; be an affine
reflection whose set of fixed points in E is H;. Assume that for i # j in I, the intersection
Aij = A;N Aj is a prefundamental domain for the subgroup G;i; of AGL(V) generated by
o; and 0. Then
(i) A is a prefundamental domain for the subgroup G of AGL(V) generated by the o,
1 €1;
(1) (G, {o; |1 € I}) is a Coxeter system of type M = (mij)i jer, where my; is the order of
0i0j5;
(iii) for all i € I and w € W, either wA C A; and l(piw) = l(w) + 1, or wA C p;A; and
(psw) = l(w) — 1.
See [Vinb 1971] for more information on the structure of {J,cw wA. Below we are
primarily interested in linear groups generated reflections in real vector spaces. For char-

acterizations of finite examples over fields of positive characteristic, see [Wag 1980/1] and
[ZaSe 1981].
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3.3 Further Examples (vi) Let T be the cube in Euclidean space IR® whose vertices
are the points all of whose coordinates are 1. Consider the incident triple consisting
of the vertex v; = (1,1,1), the edge va = {(1,1,1), (1,1,-1)}, and the face v3 = v3 U
{(1,-1,1),(1,-1,-1)}. Denote by p; the reflection fixing vi+1 and vis (indices mod 3).
They are given by the matrices

10 0 1 00 010
01 0},{0 0 1},]1 O 0]}, respectively.
0 0 -1 010 0 01

The reflections p1, p2, p3 leave I' invariant and generate the group G of 48 isometries of T'.
This group is isomorphic to the Coxeter group W (B3), where, for arbitrary n > 2,

B'n. = o .__.._o......()--———o-—————4 o .
1 2 n—2 n—1 n
Here A is a cone whose ‘apex’ is the origin and whose radii run through a small triangle in
the face v3.

(vii) Each of the convex regular polytopes of Euclidean space obtained in Theorem 3.2 gives
rise to a group of isometries which is a Coxeter group. The n-simplex (with n + 1 vertices)
in IR™ gives W(A,), the hypercube in IR™ gives W(B,). As a result, besides W(A,,) (of
order (n+1)!) and W(B,,) (of order 2™n!) the following Coxeter groups W(M) can be shown
to be finite; their orders can be computed by a count of images of A in the same way as in

(+i).

Fy= o o 4 o )
1 2 3 4

H3= o o 5 o
1 2 3

Hy= o o o —35 o
1 2 3 4

(viii) Consider the regular tiling of IR? by triangles. Reflections in the hyperplanes bounding
a triangle give a Coxeter group of type

—_— o.
0 1 2
Higher dimensional analogues exist with diagrams
an o 4 -o—-——~0"~-'~0——-———°—"_—'—4 o (n>2)
0 1 n—2 n—1 n -
F4 = o o o 4 o o .
0 1 2 3 4

4. Characterizations

Obviously, any group generated by involutions is a quotient of a Coxeter group. Thus, in
a sense, Coxeter groups are universal among groups generated by involutions (with specified
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orders for their products). Here are some other characterizations of Coxeter groups. For
any set X, we write P(X) to denote its power set. If i = 4; -+-4, € I'*, then a substring of
iis any word of the form 4, iy with 1 < x(1) < ... < x(t) < ¢ for some ¢ < g. The
particular substring of length ¢ — 1 with x(5) = j for precisely those j for which j < k is
denoted by 4y - 15 - -1q. For any Coxeter system (W, R), set T = Upew wRw™! and write

zZ/T =P z/@2)t

teT

to denote the module with W-action given by w ot = wtw™! for w € Wt € T.

4.1 Theorem (Main Characterizations of Coxeter Groups) Let W be a group generated
by a set R of involutions. Each of the following conditions on W and R is equivalent to
(W, R) being a Coxeter system.

(1) (Reflection Representation) There is a real linear representation o : W — GL(V) such
that, for r € R, the transformation o(r) is a reflection with hyperplane H, and there is
a choice of open half-space A, with boundary H, such that

- n‘rER Ar :/: 0’.
- A, N A, is a prefindamental domain for (r,s) whenever r,s € R.

(i) (Root System) There exists a linear representation of W on a real vector space V, a
W-invariant set ® of non-zero vectors in V, an embedding v > e, of R into ®, and an
ordering < (partial) on V (compatible with the real vector space structure of V) such
that
-ifa € ® then —a € $ and eithera > 0 or o < 0;

-e,>0andre, <0 forallr € R;
-ifa € ®\{e.} and @ > 0, then ra > 0;
- ifwe, = en then 7' = wrw™! for each v/,r € Rand w € W.
(iif) (Cocycle Condition) There exists a map v: W — Z/(2)T such that
- v(r)=r for each r € R;
- v(vw) = v(v) +vo v(w) for all v,w € W.

(iv) (Strong Exchange Condition) If w = ry---7y € W (with ; € R) and t € T satisfy
I(tw) < l(w), then tw =7y ++-7; -+ -7, for some i € {1,...,q}.

(v) (Brubat Condition) There is a map Bruh: W — P(W) such that

- ifw =1y -7y is a reduced expression then Bruh(w) consists of all r;, ---7;, for
any substring 4y --+14 of 1-+-¢;
- for any t € T and w € W we have w € ¢t Bruh(w) U Bruh(tw).
(vi) (Hyperplane Condition) There is a map r — C, from R to P(W) such that
- 1€ C, for each r € R;
- CrNrCy =0 for each r € R;
- Ifw € W and r,s € R satisfy w € C, \ Cps then r* =s.
(vii) (Exchange Condition) If 71 - --7q € W (with r; € R) is a reduced expression for w € W
and r € R satisfies [(rw) < l(w), then rw =7y -+ 7;---7, for somei € {1,...,q}.

In these cases, the type M = (m,,,) of (W, R) is determined by the fact that m,, equals
the order of rs forr,s € R, and C, = {w € W | I(rw) > I(w)}.

All but (i) and (iii) of the above equivalent conditions are dealt with in [Deo 1986];
statement (iii) stems from [Dyer 1990]. We start here with the proof that a Coxeter system
satisfies (1). Thus, we reverse the setting of the previous section in the sense that we produce
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a reflection group from a given Coxeter group. The outcome will be a linear reflection group
rather than an affine one.

Consider a Coxeter system (W, R) of type M = (mij)i,jer- Let V be a real vector space
with basis (e;)ies of vectors indexed by I. Denote by By, or just B if M is clear from the
context, the symmetric bilinear form on V defined by

Bles, ) = —2cos (n/my;) (.5 € 1)

with the understanding that B(e;,e;) = —2 if mi; = 0o. We call By, the symmetric bilinear
form associated with M and write = L y to denote B(z,y) =0 for =,y € V. For each z € I,
consider the linear transformation o; of V defined by

oi(z) = 2 — B(z,ei)e;  (z€V) (1)

This defines a reflection of GL(V) in the hyperplane i and with root (i.e., eigenvector with
non-trivial eigenvalue) e;.
The following general approach is due to Tits (cf. [Tits 1969], [Bourb 1968]).

4.2 Proposition (Reflection Representation) Let B be the symmetric bilinear form as-
sociated with the Coxeter matrix M, and let p; (s € I) be as in (1). Then the map-
ping v: R — {o; | i € I} given by v(p:) = 0; extends to an orthogonal representation
v: W — O(V, Bar) (that is, a linear representation on V preserving Bas).

Proof Any vector z € V decomposes as z = x; + z';, where 2; € IRe; and z'; € ef.
Then 0i(z) = ' ~ 2, so B(oi(2),0:(y)) = B(e's — zi,9'; — v:) = B(z's,y';) + Blzi, 4:) =
B(z'; + zi,9'; +yi) = B(z,y).

Suppose m;; = co. Then B(e;,e;) = —2 and e; +e; € ef ﬂe;‘“, whence e; + ¢; is fixed
by o; and o;. As gioj(ei) = e; + 2(e; + ¢;), this yields (0i05)™(e:) = ei + 2n(e; + ;) for
each n € 1IN, so 0;0; has infinite order.

Suppose m;; < co. Then, for z = z;e; + zje;j,

B(z,z) = &} — 2zizjcos (1/myj) + % =

= (z; — zjcos (r)mi;))? + m?sinz(r/m,-,-).

Thus, the restriction of B to IRe; + IRe; is positive definite, so the restrictions of o; and o;
can be interpreted as reflections in a Euclidean plane. Since Bfe;,e;) = —2cos (r/my;) =
2cos (m — 7 /my;), the angle between e; and e; is 7 — w/m;;. Thus the restriction of o;0;
to the plane IRe; + IRe; is a rotation of angle 2w/m;;, and so has order m;;. Moreover,
V = (IRe; + IRe;) + (ef Nef) and o; and o; act trivially on the second factor. Therefore,
the order of o;0; also equals m;. QeD

4.3 Corollary If (W, R) is a Coxeter system of type M, then
(i) the mapping i — p; (i € I) is a bijection from I onto R;
(ii) the restriction of v to the subgroup {pi, p;) of W is faithful for every i,j € I.

We will employ Theorem 3.2 to derive that v itself is faithful.
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4.4 Examples (i) For M = Bj, there is an equivalence between the representations de-
fined by the proposition above and Example 3.3(vi) such that oy, o3, o3 correspond to the
reflections py, p2, p3 defined there. The bilinear form B of the proposition corresponds to
the standard inner product left invariant by the o;.

(ii) The infinite dihedral group. Let I = {1,2} and my; = co. On the basis e;, ez, the
bilinear form B of the proposition is

B(z,y) = 2z1y1 + 2z0y2 — 22192 — 23231 (T =161 + Toe2,y = y1e1 + Y2€2),

so that e +e3 € eiL n ef“. Hence o1 and o3 fix all points of the line z; — 2z = 0. We
would like to apply Theorem 3.2 to derive that the representation + is faithful, but there is
no convenient choice for A as in Theorern 3.2. Therefore, we switch to the contragredient
representation.

Consider the dual vector space V* and the contragredient representation v* determined by
(frvy = (v*(g)f,r(g)v) forallv € V, f € V*. Forv € V, set A, = {z € V* | (z,v) > 0}.
This is a half-open space in V*. Now we set A; = A, and A = ();c; Ai. Then A # 0
(as 3;ef € A where (ef); is the dual basis of (e;);) and for g € W, v € V we have
Aygy = 7*(9)As, since (z,v) > 0, is equivalent to {y*(¢)z,7(g)v) > 0. In particular,
Y (pi)A = Ay(pye: = Ae; = —Ai, whence A;Ny*(p:)A; =B forallie].

4.5 Theorem In V*, the half-spaces A; and the reflections v*(p;) satisfy the assumptions
of Theorem 3.2. In particular, v* and <y are faithful.

Proof The second statement follows from kery = kerv* and from Theorem 3.2. Next,
A =();c; Ai # 0 since a linear form f taking the value 1 on each e; is definitely in A.

Finally, let i # 7 in I and consider w € W;; with A;; N y*(w)A4i; # 0. We must show that
w = 1. To this end, consider the subspace U = IRe; + IRe; in V. There is a canonical
homomorphism 7 from V* onto U* (namely restrictions of linear forms on V to U). Since
pi leaves invariant every plane containing e;, in particular U (and similarly for p; instead of
pi), the group W; ; = {p:, p;) acts on U. Observe that, for v € U, we have 1A, = {z € U* |
{z,v) > 0}. On the other hand, if |I| = 2, the proposition is readily seen to hold. Hence
TA,Nw|y* 1A, # 0 implies w = 1. Suppose now f € A;; Nw|y*A;;. Then both f|y € 74,;
and fly € mw|y” Aij, whence fly € T(Awe; N Awe;) = TAwe; N TAwe; = wlp T A;j. Thus
flu € m4i; nw|p* 7 Aij, giving w = 1.

‘We proceed to prove Theorem 4.1.

4.6 (i)=(ii) For r € R, take e, to be the norm 2 eigenvector of 7 in A4,, and @ = J,cz We.
Setting v > 0 if and only if e} € A, for each s € R, we obtain wA C A, if and only if
w~le, > 0. This gives the first two properties of a root system as in (ii). If @ € &\ {e.}
and a > 0, then (r(a),e,) = (a,e,) > 0 for at least one s # r, so r(a) > 0, whence the
third property of a root system. Finally, suppose we, = e, for certain 7,s € R and w € W.
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Then, for any v € V,

wrws(v) =wr(w v — Bv,e,)wle,)

=w(w™ v — B(v,e,)er — B(w™ v ~ B(v,e,)en, er)er)
=v — B(v, e,)we, — B(w™'v — B(v,es)en, ex)wen
=v — B(v, e,)we, — (B(w ™ v,e,) + 2B(v, e,))wer

=1)’

proving wrw™! = 5. Hence (ii).

4.7 (ii)=>(iii) First of all note that re, = —e,. This follows from the second condition in
(ii) as & = —re, € P satisfies both o > 0 and ra < 0.

Second, note that we may replace ® by J,cr Wer. We shall do so and show that then
T and & are equivalent W-sets. To this end, assign to ¢ = wrw™! € T, with » € R and
w € W, the element et € {iwe,} with e, > 0. To see that e, is well deﬁned suppose
we also have t = w'r'w'™ for v € R and w' € W. Then ruw™'w' = w™lw'r/, leading
to r(wlw'en) = 'w‘lw"r’e + = —(w™lw'ey), so that the root system propertxes yield

wlw'en € {*e,}; thus w'e, and we,, both being > 0, must coincide. The inverse of the
map ¢ — e; from T to ® is given by we, — wrw™! (r € R;jw € W); it is well defined in
view of the last property of root systems. Thus ¢ +— e; is a bijection, which is readily seen
to be W-equivariant.

Now suppose w =71 ---rg and t € T. If w™le; < 0, then, as e; > 0, there exists 1 €
{1,...,g} such that r; 1 ---7e; > O and r; ---r1e; < 0. But then the root system properties
imply ri—1-- 716t = ey, whence, by the above equivalence, t = ry---rj_17iTi_1---71, SO
tw =7y Ti17iTiy1 -+ 7. We have shown:

(*) fw=r---ry and t € T satisfy w'e; < 0, then tw = 71 - - -7;_17iriq1 - - - 74 for some

7.

Define v : W — Z/(2)T by

viw)= Y.t (wew).

tE€ET,w—te:<0

Observe that, by (*), the cardinality of {t € T | w™'e; < 0} equals I(w); in particular it
is finite so v is well defined. By the second and third property of (ii), we see v(r) = r for
r € R. Finally, for v,w € W, we have v(v) = Y.{t € T | v"'e; < 0 and w‘lv‘let < 0}
+}:{t€T|v“let<0andw v7le; > 0}, while vov(w) = 3{t € T | v~le; > 0 and

w? “15.5 < 0} + Y {teT|v'e; <0and wlv~le, > 0}, so that v(v) +vov(w) = Y {t €
T|w v e; < 0} = v(vw). Hence (iii).

4.8 (iii)=(iv) Fort € T and w € W, let 1(w) € {0,1} be such that v(w) = Y, ve(w)t.

We claim l(w) = 37, .7 vi(w). To establish the claim, suppose 1 - - - 74 is a reduced expression
for w € W (so that ¢ = l(w)) Then v(w) =t; +... + tq, where t; = (ry---ri_1) ory. If
t; = tj for i < j, then (ri---rj_1) o 7; whence w = ry---7---7} -7y, contradicting
l(w) = ¢. Hence the claim. Note also, for future use, that the above also gives: vi(w) =1
implies I(tw) < I(w). Next we show that v4(t) = 1 for any ¢t € T. To this end, write
t=(rm--+71)org. If m =0 then t € R and there is nothing to show. Suppose therefore,
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m > 0. Then v(t) = v(rm((Tmtrm)rm)) = v(Tm) + 7m © (V(Tmtrm) + (Pmtrm) 0 v(rm)) =
Tm + Tm 0 V(tm 0t) +tor,. Since t # 7, this yields 14(t) = Vrot(Tm ot) and, as
Tm 0t = (Tm_1--+71) 0Ty, we are done by induction on m.

From this identity, we see v;(tw) = v4(t) + vi(w) =1 + v¢(w) mod 2. Thus ve(w) =0
gives »(tw) = 1. Recall that that v,(w) = 1 implies I(tw) < I(w). Application of this
statement to tw instead of w gives that 1 (tw) = 1 implies I(w) < I(tw) (observe that
ttw = w). We have reached the dichotomy: either »;(w) = 1 and I(tw) < I(w), or vy(w) =0
and l(w) < l(tw). Now (iv) is immediate.

4.9 (iv)=(v) Forw € W let Bruh(w) be the set of all elements in W of the form tg - - - t;w
(for some natural number g) with I(t;---tyw) < I(ti1 -+ - tyw) for each i € {1,...,q}. By
the Strong Exchange Condition, the elements of Bruh(w) are of the shape required in the
first condition of (v). The converse needs more elaboration. Suppose w = r1---74 is a
reduced expression for w and consider the element z obtained by deletion of r;,,...,;_ for
certain 1 <7 < ++- < ip < g. f m = 0 then z = w € Bruh(w). Therefore, assume
m > 0. Put £ = ry---7; 17y 7,1 -~ -7, so that ¢z is obtained from w by deletion of
Tiys---2Ti,. By induction on m, we may assume tz € Bruh(w). Thus we are done if
I(tz) > I(z). Assume therefore I(¢z) < I(z). Then, by the Strong Exchange Condition, there
isj € {1,...,9}\ {i1,...,im} such that tz is obtained from w = 7, ---7r, by deletion of
TjsTizs-- s Tipm- U J <1y, then ry---75+--7y 3 =71 -7;, contradicting that w = ry--- 7y
is a reduced expression for w. Hence j > 4;. Moreover, z = t(tz) can be obtained from
w = r1---74 by deletion of r4,,...,7;,...,7:,. Thus, for fixed m, we have reduced to a
case in which the subsequence of deleted generators occurs ‘higher up’ (in terms of indices).
The highest case 2 = r; -+ -r,_m being obvious, this proves by recursion that z € Bruh(w),
always.

It remains to show that, for any ¢t € T' and w € W, we have w € ¢ Bruh(w)U Bruh(tw).
From the above definition of the map Bruh, it is clear that either I(tw) < l(w) and tw €
Bruh(w) or I(t(tw)) < I(tw) and w = ¢(tw) € Bruh(tw), whence the result.

4.10 (v)=>(vi) For each r € R, set C,. = {w € W | [(w) < I(rw)}. Then, clearly 1 € C,,
and, more generally, w € C,. if and only if w € Bruh(rw). Also C, NrC, = {§ is immediate.
Suppose w € W and r,7' € R satisfy w € C.\ Crr'. Then wr' € Bruh(rwr’), so wr’ €
r Bruh(wr'), proving I(rwr’) < I(wr'). Consequently, l(wr') = I(rwr’) + 1 > I(rw) > I(w).
So, from a reduced expression 7y ---r4 for w, we obtain the reduced expression 71 - - 7441
for wr’ with rg1; = r/. From rwr’ € Bruh(wr’), we obtain j € {1,...,q + 1} with
rwr’ =7y 7 -rgyq. But 7 < ¢ would contradict I(rw) > I(w), so j = g+ 1, proving
rwr' = w; this establishes ' = w~!rw, as required.

4.11 (vi)=>(vii) Suppose w € W\C,. Let ry ---74 be a reduced expression for w. Since
1 € C, and w € C,, there must be j € {1,...,q} with 7, ---r;_1; € C.\Crr;. By the
last property of (vi), this gives rj_y 777y ---7;_1 = r;, whence rw =7y ---7;--- 74 and
l(rw) < l(w). Thus {w € W | l(w) < l(rw)} C Cr. But then {w € W | I(w) > l(rw)} =
r{w € W | l(w) < I(rw)} C rC,, and C. N1C, = § gives C, = {w € W | I(w) < I(rw)}.

We now derive the Exchange Condition. Let 7y - -+ 74 be a reduced expression forw € W
and suppose I(rw) < l(w) for some r € R. Then w € C,, so, by the above, there exists
J€{1,...,q} withrw =17y ---7} -+ - 14, proving (vii).

The proof that (vii) implies that (W, R) is a Coxeter system uses the following remarkable
result.
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4.12 Lemma Suppose (W, R) satisfies the Exchange Condition. Let M be the matrix
over R (assuming some ordering on R) whose 7, s-entry my, is the order of rs. If F is a
monoid (with unit) affording a2 map ¢ : R — F such that for any two distinct r,s € R we
have

B(r)(s)p(r) -+ [my 5 factors] = @(s)P(r)(s) - - [my,q factors] if ms s < oo,

then ¢ can be extended to a mapping, also called ¢, from W to F such that ¢(w) = ¢ry - - - ¢r,
whenever 1 - - -4 is a reduced expression for w.

Proof We shall work in the free monoid I* on a copy I of R. The identification of I and R
will be made through a map p : I — R which naturally extends to a morphism p: I* — W
of monoids. Let I’ be the subset of I* consisting of all minimal words for w, that is all
i€ I* of length I(w) with p(i) = w. Given i =111 € I*, we put ¢(i) = ¢(i1)--- (3,).
We want to show that ¢(i) = ¢(i’) for all i,i’ € I},. We proceed by induction on I(w). If
I(w) = 1, the Exchange Condition yields that |I;| = 1, so there is nothing to prove. Assume
l(w) > 1, and let i = 41 ---ig and i’ = 41 -~ be two minimal words for w. Put i = 1.
We have I(p(i)w) < ¢ — 1, so the Exchange Condition gives p(i1y +++1;-1) = p(i1 -+ 4;) for
some j < ¢. Thus, " = 441 -~ 41541 - - *1q € I},. Deleting the first letters of i’ and i and
applying induction to p(¢)w, we obtain ¢(i') = ¢(i"). If j < g, then, comparing the last
terms of i” and i and applying induction to wp(i4), we obtain ¢(i) = #(i"), so that we are
done.

Therefore, we may assume j = ¢q. Then, replacing the pair i,i’ by i’,i, and using the
same arguments, we obtain i/ = iy44; - 1,9 € I with #(i"") = ¢(i). Repeating this
process, we obtain u = 7;44; -+ and v =411 -+ € I}, each sequence involving only 7 and 7;
alternately, with ¢(u) = ¢(i) and ¢(v) = ¢(i'). Now p(u) = p(v) and I(u) = I(v) = g imply
that ¢ is the order of p(3)p(i1), so the hypothesis of the lemma gives ¢(u) = ¢(v), whence
#(i) = ¢(i'). Thus the mapping ¢ is constant on each Iy, so its restriction to | I:

weEW ~w
factors through W as required. QeD

4.13 (vii) implies that (W, R) is a Coxeter system Let M be the matrix over R as
given in the lemma. Denote by (W, R) the Coxeter system of type M. We shall apply
the lemma to the canonical mapping r +— 7 from R to R, taking F to be the monoid
underlying the group W. By definition of (W, R), this mapping satisfies the hypothesis of
the lemma. Hence we obtain a mapping w — W from W to W such that w = 7y---7,
whenever w = 7y ---7, and ¢ = I(w). We claim that w — % is a homomorphism. First, we
show that 7w = 7w for all * € R,w € W. If l(rw) = q+ 1, we have Tw =77y -+ Tg = T @.
If I(rw) < g, the Exchange Condition gives a j € {1,...,q} with rw =71 -+ r;_17j41 - T,
whence I(rw) = ¢ — 1. By use of 72 = 1, we obtain
TW =Ty Tj1Tj41 = Tg =T - "75—17‘-??3‘—4-1 Ty

=TT TyoaTjFyp1 T = 70
Next, we settle Wo =497 for all u,v € W, by induction on I(u). The case I(u) = 1 has just
been treated. Assume I(u) > 1. Then u =ru’ for some r € R,u' € W with I(u') < I(u), so
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proving that W W is a morphism indeed. Finally the morphism is clearly surjective,
and, since W is freely generated by the relations (F5)™r = 1 (r,s € R), it must be an
isomorphism. QeD

5. Beautiful properties

Here we discuss a number of properties of Coxeter groups which follow mare or less
straightforwardly from the characterizations in the previous section. Proofs are to be found
in [Bourb 1968] and [BCN 1989]. First of all note that, due to Corollary 4.3(i), the sets
I and R can be identified via p. We shall still use p if confusion is imminent, e.g., when
discussing the word problem.

Fix a Coxeter system (W, R) and let J, K be subsets of R. The subgroup (J) of W,
also denoted by Wy, is the subgroup generated by J. It is again a Coxeter group, as we
shall soon see. At any rate, Wy = {1} and Wg = W, and J C K implies W; C Wi. Set

Dsx ={w €W |l(rw) = l(ws) > l(w) for all s € J and r € K}.

The set Dy, x will turn out to be a natural system of double W, Wx-coset representatives.

5.1 Proposition Let (W, R) be a Coxeter system, and let J, K be subsets of R.
(i) Suppose r175 -7, is a non-reduced expression for w € W. Then there are indices

1,7 € {1,...,q} such that rirg - rg =1y m_yrigy T -+-1q. Thus, given a
word in p~!(w), a minimal word for w can be found by repeatedly cancelling factors in
pairs.

(ii) For each w € W there is a subset R,, of R such that R,, = {ry,...,r,} for each reduced
expression w =71 * -+ Tq.
(iit) If w € Wy, then l(w) =1;(w) and R,, C J.
(iv) The map ¢5x : Dyjx — Wij\W/Wk sending w € Dy g to WywWk is a bijection.
Moreover, Dy x = DjgN Dy x. Each w € W has a reduced expression w = udv with
d € Dy, u € W;, v € Wg. In particular, ¢;,]k(W]wWK') consists of the unique
shortest element of WywWiy.
(v) If W is finite, there is a unique longest element wq in W. This element is an involution
with wo Rwg = R.
(vi) If v is the Reflection Representation, then Wy = {w € W | y*(w)e} = e} for each
i€ R\ J}.

Proof (i) is immediate from the Exchange Condition.

(i1) We apply Lemma 4.12 to the map r — {r} from R to the monoid P(R) of all subsets of
R in which multiplication is given by set theoretic union (the empty set is the unit). Since
{r}u{s}u{r}uU-.- = {r,s}, the hypothesis of the lemma is satisfied. Therefore, the map
can be extended to a map w +— Ry, such that R, = {r1,...,74} for every reduced expression
711 of w.

(ii1) The first part of (iii) is obvious from (i1). As for the second, let 1 :- 74 be a reduced
expression for w, then 74---7; is a reduced expression for w~1, so, by (ii), Ry = Ry-1.
Furthermore, by the Exchange Condition Rm., C {r} U Ry, s0 Ruyw € Ry, U Ry, for all
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v,w € W. Hence {w € W | Ry C J} is a subgroup of Wy containing J. Consequently,
Wy={weW|R,CJ}

For (iv) and (v), see [Bourb 1968, Ch. IV, Ex. 1.3 and Ch. IV, Ex. 1.22].

(vi) Clearly, each element of Wy fixes all e} for i € I'\ J. Conversely, suppose p(i1) - p(2q)
is a reduced expression of w € W with we} = e} (again, we suppress -y in the notation).
Then, by 4.1(ii), 0 < (e}, e:,) = (e}, we;,) <0, establishing that 7 14 so that p(ig)el = e}
Thus we can finish by induction applied to p(i1)---p(ig-1), to show that p; € R,. This
gives (vi). QeD

Some of the distributive laws only the freshman would dream of hold for certain natural
subgroups of Coxeter groups:

5.2 Theorem (Convexity) Let W be a Coxeter group over M = (Mys)sscR, and suppose
J, K, L are subsets of R. Then
(i) (Wy,J) is a Coxeter system of type M| xJ-
(ii) WrNWg = Wirnk-
(iii) Wy WrgNWp = (W] n WL) (WJ n WL).
(iv) Wy(WgnWi) = (W;Wg)N(W;Wyg).
(v) Ifw€ Dy then Wy NuwWgw™! =(Jn wKw™).
(vi) Ifw € Dy and z,y € W satisfy zw = wy then z € (Ry) (R3), where K+ = {r € R |
rs=srforall s € K}.
(vil) Ifl(sz) < Il(z) and I(sy) < I(y) then I(z"'sy) > (z'y).

Proof (i) If w € Wy, then by (iii) of the above proposition, the length of w in (W, R) and
in (W; J) are equal. Therefore, the Exchange Condition in (W, R) implies the Exchange
Condition in (Wy,J). By Theorem 4.1, the latter must be a Coxeter system.

(ii) If w € W;NWk, then by (i) the set R, is contained in both J and K. Hence w € Wink,
and W; N Wx C Wrnx. The converse inclusion is obvious.

(iii), (iv) can be shown to hold similarly to (ii). See [BCN 1989] for a proof of (v) and (vi).

(vii) Let z,z,...,%; = sy be a minimal path in C(W, R) from z to sy. Thus, [ =I(z~1sy).
Recall the definition of C, from 4.1(vi). Since z € sC, and sy € C, (as I(sz) < I(z) and
I(sy) < l(y)), we have m € {0,...,] — 1} such that z,, € sC, and z,n41 € C,. From the
existence of r € R with T,ny1 = Tmr, we see sz, € Cs \ Cor. By 4.1(vi), Tont1 = TmaT =
STy, SO T = Tg, T1,...,Lm = STmt1, $Tmt2,---,5C = ¥ is a path in C(W, R) from z to y
of length ! — 1. Consequently, l(z"1sy) > I(z~1y). QED

In terms of chamber systems, (ii) represents a convexity property whereas (iii) and (iv)
are known as intersection properties. (vii) will be used in the proof of 7.10.

Property (i) of 5.1 can be further refined. Write k; ; for the word iji--- € I* of length
m; ;. Thus p(k;;) = p(k;i). I i,j € I*, set i ~ j if there are a,b € I* and r,s € I such
that i = ak,,b and j = ak,.b. Recall the definition of I}, from the proof of Lemma 4.12.
Clearly I}, is a union of connected components of the graph (I*,~).

5.3 Theorem ([Tits 1969]) Let (W, R) be a Coxeter system and w € W. Then
(i) I is a connected component of the graph (I*,~).
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(ii) If X is a connected component distinct from Iy where j € X, then there exists
i=1;---1g € X withi; =1ij4; for some j € {1,...,q - 1}.

(i) Ifw € W and4,j € I satisfy l(wp;) = I(wp;) < (w), then there exists x € I* such that
xk; ; € I%,.

5.4 Reflections Elements of the set T = {wrw™ |7 € R,w € W} are called reflections.

Theorem 5.2(i) shows that certain very special subgroups of W generated by reflections

are again Coxeter groups. Much more generally, let U be a reflection subgroup, that is, a
subgroup generated by reflections (so U = (U N T)). Set

Ry={teTnU| if t' € TNU with I(t't) < I(t) then ¢ = t}.
Then, according to Deodhar and Dyer (cf. [Deo 1989] and [Dyer 1990)):

5.5 Theorem Let (W, R) be a Coxeter system and U a reflection subgroup. Retain the
above notation for T and Ry. Then (U, Ry) is a Coxeter system and T NU is the set of all
reflections of U.

The proof is based on:

5.6 Lemma

(i) RNU C Ry;

(ii) letr € R; if r € U then Ryy. = Ry; otherwise, R,yy» = o Ry;

(i) Ift € UNT there arety,...,tn € Ry witht = (t,---1;) o ty;

(iv) the map vy : W — @,cqny Z/(2)t given by vy(w) = v(w) NU satisfies vy(vw) =
vy(v) +vovyg(w) forallve W, w e U.

Here the operator - NU on P,y Z/(2)t is the obvious projection onto @,cpny Z/(2)t.
Proof First observe that Ry = {t € T | vy (¢t) =t}. Let r € R.
(1))fre RNU, then vy(r)=rNU =rsor € Ry.

(i) The first case is immediate from rUr = U if » € U. Suppose r € U and t € Ry. Then
v(rtr) =r+rov(tr) =r+rov(t)+ro(tor) =r+rov(t)+(rt)or. Asr € U, we also have
rgrolU and (rt)or € roU. Thus v(rtr)NrolU =rov(t)Nrol = ro(v(t)NU) = rovy(t).
Hence r o Ry C R,ou. Applying this result to 7 o U instead of U, we obtain r o R,y C Ry,
whence R,.py C 7o Ry, proving (ii).

(ii1) The proof is by induction on I(¢). If I(t) = 1, then t € RNU C Ry by (i). Suppose I(t) >
1 and take a reduced expression 71 - - - ramy1 for ¢ (recall that I(t) is odd since this is true for
a conjugate of ¢t in R). Then (by length consideration of t™171 -+ Ppmi1 = Toma1 - - Tmt2)
we have rypi1; = 7; foreach i =1,...,m, so that t = (ry -+ Tn) 0 Trpy1. Set r =7y. As
rot € (roU)NT has length 2m — 1, the induction hypothesis provides for fg, ..., tx € Rror
with rot = (tg---t;)otg. If r € U, then 7 € roU so, by (ii), t = (rtx -- -t )ots € Rrov = Ry
Otherwise, » € r o U, so setting s; = r ot;, we derive from (ii) s; = 7o t; € PR,y = Ry,
whence t = (s -+ s1) 0 sp as required.

(iv) is straightforward. QD

As for the proof of the above theorem, set

T = U wRU'w_l .
wE(Ry)
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By (iii), UNT C T' so UNT = T". Furthermore,
U=({UnT)=(T")C(Rv) C T,

whence I = (Ry). Now vy as defined in part (iv) of the above lemma is readily seen
to satisfy the Cocycle Condition 4.1(iii), so Theorem 4.1 yields that (U, Ry) is a Coxeter

system. QD

5.7 Example Consider the Coxeter system (W,{1,2,3}) of type M, where M is the
3 x 3-matrix with all off-diagonal elements equal to co. Then the set Rg = {121, 131, 212,
232, 313, 323} of reflections in W generates a reflection subgroup Us. A direct check shows
that Ry, = Rs, so that (Us, Rg) is a Coxeter system of type a 6 x 6-matrix all of whose
off-diagonal entries are co. Iterating this construction, it will be clear that one can obtain
reflection subgroups of W of arbitrary finite rank.

In the chamber system C(W, R), each reflection ¢t € T corresponds to a wall, that is,
the collection {{w,wr} | t = wrw™!, w € W, r € R} of edges of C(W, R). By use of the
Hyperplane Condition 4.1.(vi), the roots we, can also be interpreted in terms of the chamber
system, see e.g. [Ron 1989].

5.8 The Bruhat order Let (W, R) be a Coxeter system. From 4.1(v), it is clear that
Bruh is uniquely determined by its properties. We shall write < for the relation on W
defined by ¢ < w if z € Bruh(w). Thus, z < w if and only if there is a reduced expression
T1---7q (r; € R) for w such that 2 = r;, ---7m; (where 1 <4; <3 < ... <ip £ ¢). In
view of Proposition 5.1(1) we may require that the expression for = be reduced. Therefore,
< defines an order on W; it is the so-called Bruhat order. Clearly, 1 is the smallest element
of W; in case W is finite, the longest element wq (cf. 5.1(v)) is the largest element.
See [Deo 1977], [Bj6 1984] and [BjWa 1982] for useful properties of the Bruhat order.
We mention two, where z,y € W and r € R:
- Ifllrz) <l(z) and [(ry) < l(y) thenz <y <= re <y <= rz <ry.
- If z < ythen thereisachainz =29 <z < ... <2y =y € W of elements of W such
that I(z;—1) =1(z;) — 1 forall i € {1,...,t}. Moreover, if z,y € Dy ; for some J C R,
then all z; can be chosen within Dy ;.

In [Deo 1987b], it is described how the Bruhat order can be recovered from its restriction
to Dy y and an induced ordering on W/Wj for J C R.

The Bruhat order is quite rigid: by [vdH 1974] (see also [Wate 1989]), up to group
inversion, any Bruhat order automorphism un a Coxeter group of rank at least 3 is a group
automorphism induced by a permutation of R preserving M.

6. On the structure of Coxeter groups

Since each Coxeter group has a subgroup, denoted by W, of index 2 (cf. Example
3.1.(v)) there is only one simple Coxeter group (up to isomorphism); it has order 2 and
|R| =1.

If the center Z(W) of W contains a non-identity element w, then W is finite, and
w = wp is the longest element of W, defined in 5.1(v). (See [BCN 1989] for a proof.)

In the case W = W(A,) for n > 2 the center is trivial and, for n > 4, the subgroup
W+ o Alt,y; is simple. The groups W(I*) and W(F,) are solvable, but if n > 5 and
W = W(B,), then Z(W) < W+ and W+ /Z(W) = 27! Alt, is neither solvable nor simple.
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6.1 Crystallographic groups Consider once more the Reflection Representation v. A
basic feature in Kac-Moody Lie algebra constructions, cf. [Kac 1985], is a y[W]-invariant
lattice L in IR™. The Coxeter group (W, R) is called crystallographic if there is such a
lattice L. Then, by study of IRe; + IRe;, it follows that m; ; € {2,3,4,6,00} forall 1,5 € I.
Another necessary condition is obtained by tracing a circuit C'in (I, M): the number of edges
{1,7} of C with m; ; = 0 mod 2 and the number of edges {7,5} of C with m;; =0 mod 4
must both be even. Conversely, the three conditions on M just stated, suffice for (W, R) to
be crystallographic.

A finite crystallographic group is called a Weyl group. All of the finite Coxeter groups we
have seen thus far correspond to linear diagrams (and come from polytopes). The following
non-linear diagrams lead to finite Weyl groups.

n~1
0o
D, = 0o———0----.: 0 o o,
1 2 n -3 n—2 n
2
[o]
FEg = o o <) o o,
1 3 4 5 6
2
[o]
= O [o] [e] o] [e] o]
Br=g 3 4 5 6 7’
2
o
Eg = o o ) ) o o o
1 3 4 5 6 7 8

The easiest proof that W(M) is finite for these M is by checking that Bjps is positive
definite and concluding that the root system &, being a set of vectors in Euclidean space
IR™ with (v,w) € {0,=%1,%2} for all v,w € &, must be finite. By Theorems 4.1 and 4.5,
the permutation representation of W on & is faithful, yielding that W is finite.

There is a converse to this argument: the finite groups among Coxeter groups can be
characterized as those for which the bilinear form B of the Reflection Representation is
positive definite.

The above diagrams are quite exceptional as may be clear from the following
6.2 Theorem (Finite Coxeter Groups) Let (I, M) be a connected Coxeter diagram (cf.
Example 3.1.(iv)). If the Coxeter group W (M) is finite, then M is one of A, (n > 3), B,
(n>3), Dp (n2>4), B, (n=26,7,8), Fy, H, (n=3,4), I7* (m > 3).

The Weyl groups among the finite reflection groups with connected diagram are A,
(n>3), B, (n>3), D, (n>4), B (n=26,7,8), Fy, and Gy = I§.
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If W is finite and |R| = =, the algebra of W-invariant polynomial functions on the
Reflection Representation is isomorphic to the polynomial ring IR[X7, ..., X,]. Conversely,
if W is a finite group of linear transformations on a real vector space V and the algebra
of W-invariant polynomial functions on that vector space is a polynomial ring then W is a
Coxeter group (cf. [Bourb 1968]). According to [Zales 1983], it is not true in general that
the algebra of invariants of a group generated by reflections is a polynomial ring.

6.3 Affine Weyl groups and beyond The most famous series of infinite Coxeter groups
are the Affine Weyl groups. These are the crystallographic groups for which the Reflection
Representation is positive semidefinite. Their structure is 2" W (M) for W(M) a Weyl
group of rank n — 1. Conversely, for each Coxeter matrix M of a finite Weyl group of rank
n — 1, there is an affine Weyl group of rank n. For M = B,_; (n > 4), there are two
such affine Weyl groups, one is denoted by B, _1, the other by C,,_;. In the other cases
we have uniqueness; the notation is just M. These diagrams are well known; the standard
reference is [Bourb 1968]. Successful presentations of sporadic groups, such as those in [CNS
1988], have been found by observing that the group in question has a subgroup which is the
quotient ( Z/(2))"~1.W (M) or ( Z/(3))*~1.W(M) of an affine Weyl group Z"~'.W(M).

There are various definitions of hyperbolic Coxeter groups, e.g. [Bourb 1968] and [Kac
1985]. They are associated with a Reflection Representation whaose bilinear form B has
signature n — 1,1, but also with diagrams M such that, for any proper subset J of I, the
subgroup Wy is finite.

6.4 Further Structure Results The automorphism group of W(M) has been studied
only in particular cases. In [Tits 1988], it is shown that if m; ; € {1,2, 00} for all 4,5 € I and
(I, M) has no triangles, then Aut W is the semi-direct product of W and a finite group that
can be determined directly from M. See [Howl 1988] for a way to read off the Schur index
from M (as well as the proof that the multiplier itself is an elementary abelian 2-group).

In [delaH 1987] it is shown that if W is infinite, then either W contains a free nonabelian
subgroup or W has an abelian subgroup of finite index. (Moreover, if the former case does
not hold, then By is degenerate).

For descriptions of involutions in W, see [Deo 1982] and [Spri 1982].

6.5 Problem Suppose (I, M) and (I',M') are nonisomorphic Coxeter diagrams (with I
and I’ finite). Is it true that W(M) % W(M') if M and M’ are connected? (A counterex-
ample to the non-connected case is furnished by the dihedral group of order 12 which is
isomorphic to both W (I§) and W (12 U I3).)

6.6 Related concepts If the conditions 7> = 1 are removed from the Coxeter group
presentation, the Braid group presentation results. They arise as monodromy groups of
the complement in the complexified Reflection Representation space of the union of the
reflection nyperplanes (cf. [Hend 1985)).

Let (W,R) be a Coxeter system of type M. The Coxeter monoid of type M has
presentation

rsr--- [mg, factors] = srs--- [m,, factors] if mn.s < 00, and rr =7 for all r,s € R.

Part (ii) of the proof of 5.1 deals with a quotient of such a monoid. The set of all so-called
Demazure operators on the character ring of a fixed maximal torus of semi-simple Lie group
form a monoid of this kind (these are the o; on p. 411 of [Jantz 1987], see also [Jos 1985)).
Recent work [RiSp 1989] on orbits in the flag variety G/B (over an algebraically closed field
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of characteristic # 2; see §7) of a o-fixed point subgroup of G, where ¢ is an involutory
automorphism of G, also makes use of this Coxeter monoid.

In [Tsar 1990], finiteness questions concerning these monoids and generalizations are
studied; this has an application to incidence geometry and group amalgams in that it pro-
vides a sufficient condition for finiteness of the locally finite geometry/group. To be more
specific, suppose G is a group generated by a collection of subgroups {G.},cr with the prop-
erty that (G,,G,) is finite for all r,s € R. Then there exists a Coxeter matrix M = (m;;)
with (G,, Gs) = GrG4Gr -+ [myns < oo factors] = GGGy -+ [my, < oo factors]. If the
Coxeter monoid of type M is finite (or contains an element wq with rwy = wer = wq for all
r € R), the group G is finite.

7. Geometry

A fundamental approach to the geometry underlying groups of Lie type has been given
by Tits in his theory of buildings. The origins are to be found in Tits’ book [Tits 1974] and
his paper [Tits 1981], introductions into the subject matter in [Brown 1989] and [Ron 1989).
Here we follow [BuCo 1990] and treat part of the axiomatic theory in terms of chamber
systems. Starting point is the notion of generalized polygon.

A chamber system over I is a set C (whose members are called chambers) together
with a set of equivalence relations ~, one for each 7 € I. The equivalence classes are called

panels. More generally, connected components of (C, U_,,-&. 7) for a subset J of I are called
E)

J-cells. The example to bear in mind is C(G/B;{P:}ic1), where G is a group and {P;}icr is
a collection of subgroups of GG containing the subgroup Bj; here the chambers are the cosets
with respect to B and the relation zB ~yB stands for y 'z € P;. The J-cells correspond

to the elements of G/(P; | i € J). The chamber system C(W, R) is of this shape: it coincides
with C(W/1; {{r)}rcr). Each J-cell is a chamber systems over J in its own right. We usually
assume that C is connected, that is, C constitutes a single I-cell. For C(G/B;{P:}icr) as
above this means that we assume G = (P; | ¢ € I). The relation ~ stands for the union of
 over all j € I. A type of a path ¢g,c1,...,cq in the graph (C,~) (of length gq) is a word

i1 ---14 € I* such that ¢j_; ~c; for each j € {1,...,¢}. In general the type of a path need
ij

not be unique, but it will turn out be in the examples we are interested in. We shall say
that a word in I* is simple if it never contains the same letter (from I) twice in a row.

7.1 Generalized polygons A chamber system C over an index set I of size two is called
a generalized m-gon (cf. [Tits 1959]) if
(1) each equivalence class has at least 2 chambers;
(i) the diameter of the graph (C,~) is m; moreover, for each panel p and chamber c there
is a path of length at most m — 1 in (C, ~) connecting c to a chamber in p;
(iii) the graph (C,~) contains no closed simple paths of length less than 2m.

For m > 1, condition (iii) implies that the type of a path is indeed unique. In the finite case,
the size of the j-cells only depends on the type j € I. These integers s and ¢ are known as
the parameters of the generalized n-gon C. If s,¢ > 1, the only m > 1 for which generalized
m-gons may be found to occur are 2,3,4,6,8. Also, if m is odd then s =t (cf. [BCN 1968]
for references).

For motivation, first analyze the case where s = t = 1. Then the graph (C,~) is
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connected of valency 2 and has diameter n, so consists of a single circuit of length 2n with
labels alternating between the two letters from I. In other words, C = C(W, R) (cf. §2),
where (W, R) is the Coxeter system of type I3

Next consider the case of m = 3. Set I = {1, 7}. Letting P and L , respectively, be the
collections of i-cells and of j-cells, respectively, and defining incidence I to be the subset
of P x L consisting of all (p,1) such that p N1 # @, we obtain a projective plane (P, L, ).
Conversely, a generalized 3-gon results from any projective plane (P, L,I) by letting the C
be the set of all pairs (p,l) € T consisting of a point p € P and a line I € L incident to it,
and by letting ~ and ~ stand for having a point, respectively, line in common.

In a similar way, éeneralized 4-gons can be identified with incidence systems in which
every point has a unique point collinear to it on any line not containing it (a so-called polar
space of rank 2).

Consider again the general case of a generalized m-gon C (m > 1). Write I = {¢,5}. If
¢, d are chambers at distance < m, there is a unique simple path from c to d and so we can
attach a unique type to the ordered pair (c,d). The only remaining case is when c¢,d are at
distance m. Then the type of a simple path ¢ ~ ¢ -+ ~ d is ij2--- or jij--- according as
e~cy or c~cp. On the other hand, in view of (i) both panels ci* (notation for the {i}-cell

i i

containing ¢) and ¢j* must contain a chamber at distance m — 1, leading to paths of either
type. Thus, letting F be the free monoid on I subject to the relations

iji -~ [m factors] = jij --- [m factors] if m < oo,

we obtain a map C x C — F sending (c,d) to the type of a simple path of minimal length
from c to d.

7.2 Chamber systems of type M If (I, M) is a Coxeter diagram, the chamber system
is said to be of type M if, for any distinct i,j € I, every {2, j}-cell is a generalized m; ;-gon.

7.3 Lemma Let c,d be chambers of a chamber system C of type M. Then
(i) the type of a minimal path from c to d is a minimal expression in I*;
(ii) if i € I* is a minimal expression and if i is the type of a path from c to d, then, for
each i’ € I* with p(i') = p(i), there is a path from c to d.

Proof (i) Supposec=¢g~ey ~ ...~ cq=disa path from c to d with type i. If i = iji- .-
(mi,; factors), then, by the axiom for chamber systems of type M, there is another path
from c to d with type jij - (m;; factors). Now, applying this observation to subpaths as
well, we obtain from Theorem 5.3 that, if i is not minimal, we may assume without loss of
generality that, for some j € {1,...,q — 1} and k € I, the subpath ¢j_; ~ ¢; ~ ¢j41 has
type kk. But thenc =¢y ~c; ~ ...~ cj1 ~ ¢jy1 ~ cg = d is a path from ¢ to d which is
strictly shorter than the one we started with. Hence (i).

(ii) In view of Theorem 5.3, (i), and induction on the length of 1/, it suffices to show that if
1143 - -4 is the type of a path from c to d, then for each j (1 < j < ¢) and each k € I, there
is a path from c to d of type 4145 ---2;kki;j ;1 - - -4,. But this is direct from the definition of
chamber system. QgD

The lemma shows that, given two chambers ¢ and d, there is an element w € W such that for
each word i € p~!{w) we can find a path from ¢ to d of type i. For thin chamber systems,
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the universal object C(W, R) differs from its quotients in that the element w is uniquely
determined by ¢ and d. The following definition is inspired by this observation. If the type
i of a path is a minimal expression for p(i), we also say, par abus de language, that the type
is minimal.

7.4 Definition A connected chamber system of type M over R is called a building of type
M if every simple closed path with minimal type is trivial (i.e., consists of a single chamber).

7.5 Examples (i) For any Coxeter system (W, R) of type M, the chamber system C(W, R)
is a building of type M. All panels have size 2. It is referred to as an apartment.

(ii) Take C to be the set of maximal flags of a projective geometry of rank n, and if 7 €
{0,...,n — 1}, set ~ for the relation ‘coinciding in all subspaces except possibly the i-th’.
1

Then C is a building of type A,. For, first of all, C has type A, by what we have seen in §7.1.
Second, suppose 7 is a closed simple path of C with minimal type i € I'* and origin c. In view
of induction on n, we may assume i € I,;y. Then according to 3.1(iii), we can write p(i) =
wyrywy with wy, we € (R\ {r1}), where r; = p(1) belongs to the first node of A,,. Moreover,
by 5.1.(iv), we can choose w1,ws € (R\ {r1}) in such a way that I(i) = [(w1) + 1 + I(w),
so that, by the previous lemma, we may assume without loss of generality that -y has type
(i",1,i") with ¥',i” € (I'\ {1})*. Let d,e be the 1-adjacent chambers of v (occurring in this
order). Then d,e € ¢(I\ {1})* so d € e(I\ {1})* Ne{1}* = {e}, contradicting the simplicity
of 7.

(iii) Let P be a set of 7 points. There are 30 choices L of collections 7 subsets of size three
such that (P, L,Z), where Z C P x L is the usual inclusion relation, is a projective plane — a
so-called Fano plane. The group Alt; has two orbits on the family of 30 planes, each of size
15. Let IT be one such orbit. We construct a chamber system C of type Bj as follows: the
chambers are the triples (p,l,7) with p € P and [ a line of the plane = € II containing p.
If i = 1,2, 3, two triples are called i-adjacent if they agree in all entries # 7. The resulting
chamber system is not a building of type Bs. This follows from the existence of a closed
path of type 123123123.

(iv) Starting with a polytope II in IR", one obtains a chamber system C(II) over I =
{0,...,n — 1} by taking as chambers the maximal simplices (consisting of a vertex (a 0-
face), an edge (a 1-face) on the vertex, a 2-face on the edge, and so on) and letting two
simplices be i-adjacent whenever they agree in all j-faces for j # i. If the polytope is
combinatorially regular, the chamber system is of type M for some Coxeter matrix M. Any
such chamber system can be obtained as a quotient of the chamber system C(W, R) where
(W, R) is the Coxeter system of type M. Using the topology induced from IR™, it can then
be shown that C(II) & C(W, R) (result of [McMu 1967], cf. [DrSc 1988]).

(v) If C' is a building of type M’, where M’ is a Coxeter matrix over R’, then the direct
product C x C' is a building of type M U M' over RU R'.

(vi) Let (P, L) be a polar space, that is, for each pair p,! € P x L, the set of points in {
collinear with p is either a singleton or /. Motivating examples are obtained by taking the
absolute points and lines of a polarity in projective space. Assume further that (P, L) is
nondegenerate: no point is collinear with each point in P. A singular subspace is a subset X
of P with the property that any two of its points are collinear and that all points on a line
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joining them belong to X. Then maximal singular subspaces exist and have the structure
of projective spaces. Assume further that all lines have at least three points and that the
maximal rank of a maximal singular subspace is n —1 < co. Then a chamber system of type
B, can be constructed whose chambers are the maximal chains of singular subspaces (with
respect to inclusion) and in which two chambers are i-adjacent if and only if their members
(singular subspaces) coincide in all but (possibly) the i-th member (counting 1 for points, 2
for lines, and n for maximal singular subspaces). The chamber system thus constructed is a
building. Conversely, the 1- and 2-cells of any building of type B, form a non- degenerate
polar space of rank n. See [Tits 1974]; an elementary treatment will appear in [BuCo 1990].

7.6 Proposition Suppose C is a building of type M. Then
(i) For every pair i,i’ € R* of minimal expressions, the existence of two simple paths
with common origin and common end point, and types i and i', respectively, implies
p(d) = p(i');
(i) for each J C R and each c € C, the J-cell ¢J* is a building of type M|y .

Proof (i) Denote the two paths of type i,i’ by v, v, respectively, and let ¢, d be their common
origin and end point, respectively. We proceed by induction on I(i). If I(i) = 0, then ¢ =4
(and p(i) = 1) so p(i’) = 1 by the definition of chamber system, whence p(i) = p(i') as
required. Assume I(i) > 0. Then there is j € I with I(p(ji)) < I(i). In view of 4.1(vii) and
7.4(ii), we may assume that the first element of i is 7. Thus, i = ji" for some i" € I'*. Let
e be the chamber of 4 following ¢ and denote by 4" the tail of v starting at e. Clearly, "
is a simple path from e to d with minimal type i’ and of length I(i) — 1. If I(p(ji')) > I(i"),
then (e,7') is a simple path from e to d of minimal type ji’, so by the induction hypothesis
applied to 4 and (e, '), we have p(i") = p(ji'), leading to p(i) = p(i’) as desired.

Suppose, therefore, that I(p;p(i')) < I(i’). Then, as before, we may assume, without loss of
generality, that i’ = ji’" where i’ is minimal. Denote by e’ the chamber of v’ following ¢
and by 7" the tail of v with origin e'. If e # €/, then (e,y") is a simple path from e to
d with minimal type ji"’, so by the induction hypothesis p(i") = p;p(i"), whence ji'" is a
minimal expression for i”, contradicting I(5i") = I(i) > I(p;p(i)). Hence, e = ¢’ and, again
by the induction hypothesis, p(i”’) = p(i"), so that p(i) = p(ji") = p(4i"") = p(i’). This
establishes (i).

(i1) is immediate from the definition of chamber system. QD

The axiom of buildings can be weakened. This is the context of the theorem below
(cf. [Tits 1981]). As a consequence of its proof, we obtain some elementary properties of
buildings.

7.7 Theorem Let C be a connected chamber system of type M over I. Suppose there is
a chamber c such that for every pairi,i’ € I'* of minimal expressions, the existence of simple

paths with common origin ¢ and common endpoint, and types i,1', respectively, implies
p(i) = p(i"). Then C is a building.

Proof Let d be a chamber, and let v, be two distinct paths starting at d, with the same
endpoint, and with respective minimal types i and i’. We show that p(i) = p(i’). Note that
this suffices for the proof that C is obviously a building.
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In view of induction on the length of a path from ¢ to d (and connectedness of C) it
suffices to establish p(i) = p(i') in the case where ¢ ~ d. Thus, suppose ¢ € d(j*) for some
j € I. The paths (c,v) and (c,7’') have types i, and ji’, respectively. If these types are both
minimal, then p(ji) = p(ji') by the hypothesis, whence p;p(i) = p;p(i'), and p(i) = p(i’), as
required.

Assume that neither ji nor ji’ is minimal. Then, by 4.1(vii) there are minimal expressions
gi", 71" € I* such that p(i) = p(5i”) and p(i') = p(5i""). According to Lemma 7.4 there
are minimal paths with the same origin and endpoint as v (and 7') with types ji" and 71",
respectively. Let the first point following d on these paths be e,e’, respectively. Denote the
tail of these paths from e, e’ respectively (to the end), by ", ', respectively.

If ¢ = c # e, then the paths (c,7") and 7" both start at ¢ and have types ji” and i,
respectively; both are minimal and have the same extremities, so p(7i") = p(i"’). Hence,
I(i") + 1 = I(ji") = 1(I"") in view of minimality. But then also p(i”) = p(ji”’), whence
1(i") = I(5i"") = I(i"") + 1 , a contradiction with minimality. Similarly, we can rule out
e=c#eé. Ifc#eé, then (c,7") and (c,7"") are paths of type 7i” and ji'/, respectively,
with the same extremities, and if ¢ = e = ¢/, then " and 7" are paths of type i and i,
respectively. In both cases the required conclusion follows from the hypotheses.

Finally, assume ji’ is minimal, but ji is not (the other remaining case being the same up
to a change of réles for i and i'). Again, replace i by ji” such that p(i) = p(5i”), denote
by e the first member following d on a simple path with same extremities as v and type
ji”, and by 4" the tail end of this path starting at e. If ¢ = e, then ¢,7y' and " are paths
starting at ¢ with the same endpoints, having types ji’ and i”, respectively. Thus, by the
hypothesis, p(ji') = p(i"), whence p(i') = p(ji") = p(i), as required. Therefore, we may
restrict attention to the case where ¢ # e. Consideration of the paths ¢,7’ and c,e,y"” leads
to p(51') = p(5i"), whence p(i’) = p(i”). Upon replacing 4’ by a suitable path, we may
assume i’ = i’. Now c,4’ and c,e,¥" are paths starting at ¢ with the same endpoint and
the same type ji’. Since d # e (due to the simplicity of d, 7"}, the following assertion shows
that we have a contradiction, thus finishing the proof of the theorem.

(*) If two simple paths starting at c have the same extremities and the same minimal

type, they coincide.

It remains to establish (*). Let 6,8’ be two simple paths, from ¢ to b with minimal type
i. We proceed by induction on I(i). The case I(i) = O being trivial, assume I(i) > 0. Thus
6 has tail h,b and & has tail A’,b for chambers h,h’ which are j-adjacent to e for some
j € I. Let 6",6" be the head part of §,6' ending at h, k', respectively. These paths have
minimal type i’ such that i = i’j. If A # A/, then §” and (', h) are paths starting at ¢
and ending at h with minimal types i’ and i, respectively. According to the hypothesis, this
implies p(i’) = p(i). This is absurd as p(i) = p(i')p;. Therefore, A = h’, and we can finish
by invoking the induction hypothesis. QD

7.8 Corollary Suppose C is a building of type M, and ¢,d,e are chambers of C. Then
(i) there is a unique element in W, denoted by p(c,d), such that the type map induces a
bijective correspondence

typ : {minimal paths from ¢ to d} — I}, n;
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(ii) if v is a simple path from ¢ to d with minimal type, then v is minimal, and p(c,d) =
p(typ(7));

(iii) ifc € dj*, where j € I, then p(c,e) € (p;)p(d,e);

(iv) the map z ~— p(d, z) is 2 morphism C — C(W, R) of chamber systems over I;

(v) Up(c,d)p(d, e)) < Up(c,e))-

Proof (i) Let v, be minimal paths from ¢ to d. Then typ(7) and typ(7') are minimal by
part (i) of the lemma, so by the definition of building, there is w € W with typ(7), typ(v) €
I%. Tf typy = typy', then v = v’ by (*) of the proof above. Finally, typ is surjective onto I,
by part (ii) of the lemma.

(ii) This is immediate from (i) and the definition of a building.

(iii) Let v be a minimal path from d to e with type, say, i. Thus p(i) = p(d,e). Consider
the path (c,v). If ¢ = d, there is nothing to show, so we may assume this path is simple. If
ji is a minimal expression, then, by (i), the path (c,7) is minimal, and p(c,e) = p;p(i) €
(p;)p(d,€). Otherwise, we may assume without loss of generality (cf. 4.1(vii) and 7.4) that
i = ji'. Let d’ be the first chamber of y following d. Then d’ € cj*, so either d' = ¢ and
there is a path from c to e of type i/, or d' ¢ and there is a path from ¢ (via d’) to e of
type ji'. Since both types are minimal, we have, again by (ii), that

ple,e) € {p(i"), p(31)} = {p(1), p;p(1)} = (ps)p(d,€).
Hence (iit).

(iv) Let z,z' be two j-adjacent chambers in C, where j € I. Then, by (iii), p(z,d) €
(pj)p(z’,d). Since, obviously, p(c,e) = p(e,c) ™}, it follows that p(d,z) € p(d, z'){p;), which
is equivalent to saying that p(d,z) and p(d,z’) are j-adjacent in C(W, R). This establishes
(iv).

(v) Since distances decrease under morphisms, it follows from (iv) that
dC(W,R) (p(d, c), p(d,e)) < d(c,e).

But, according to the remark at the end of §2, the left hand side is equal to I(p(d, ¢)~1p(d, €)),
and, in view of (i), we have d(c,e) = l(p(c,e)). Hence the corollary. QD

7.9 Apartments We shall now see that the study of Coxeter chamber systems is of good
use to buildings. In accordance with 7.5(i), an apartment of a chamber system C of type M
is a subsystem which is isomorphic to C(W, R).

Observe that if @ : C(W, R) — C is an injective morphism, then d(a(z), x(y)) = d(z,¥). In
order to find apartments in C, we have to find subsets A of chambers with the property that
the restriction to A of the morphism = — p(c,z) is injective. In particular, for d,e € 4 we
will have equality in part (v) of the corollary.

7.10 Theorem Let C be a building.
(1) Every pair of chambers of C is contained in an apartment;
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(1) if A is an apartment of C containing the chambers c,d, then every minimal path from
¢ to d is entirely contained in A.

Proof For X C W, amapping @ : X — Cis called a strong isometry if p(a(z),a(y)) = 71y
for all £,y € X. The theorem will be an easy consequence of the following assertion:

(**) If @ : X — C is a strong isometry then a can be extended to a strong isometry
a: W-—-C

Let us first prove the assertion. By Zorn’s lemma, it suffices to show that if X C W, there
is w € W\ X such that o can be extended to a strong isometry on X U {w}. If X = 0, we
can take any w € W, so assume X # 0. By connectedness of C(W, R), there must be an s-
adjacent pair of chambers for some s € R, such that only one of the two isin X. Applying an
automorphism on C(W, R) if necessary, we may assume this pair to be {1, s} so that 1 € X,
and s € X. If I(sz) > I(z) for all z € X, then, letting a(s) be any chamber s-adjacent to
a(1), every minimal path v on (1) to a(z) extends to a minimal path (a(s),7) from a(s)
to a(z), so that p(a(s),a(z)) = sz for all ¢ € X. This shows that o extends to a strong
isometry on X U {s}.

Therefore, assume (sy) < I(y) for some y € X. Let a(s) be the second chamber of a minimal
path from (1) to a(y) whose type begins with s (such a path exists by familiar arguments).
Now p(a(s),a(y)) = sy by construction of ce(s). We have to show that p(a(s), a(z)) = sz for
allz € X. Take z € X. Since p(a(1), a(z)) = z by the hypothesis on a, Corollary 7.8 yields
pla(s),a(z)) € (s)z. Suppose p(a(s),a(z)) = z. Then, clearly, I(sz) < I(z). Moreover, by
Corollary 7.8, I(p(a(z), a(s))p(a(s), a(y)) < Up(a(z), a(y))), whence l(z™ sy) < U(z7"y).
This contradicts Theorem 5.2(vii). Therefore p(c(1),a(z)) € (s)z\{z} = {sz}, and
pla(1),a(z)) = sz as required for o to be a strong isometry on X U {s}. This establishes
Y

(i) follows from (**) by taking X = {1, p(c,d)}, a(1) = ¢, and a(p(c, d)) = d for a pair {c, d}
of chambers of C.

(ii) is a direct consequence of part (i) of the corollary as C(W, R) contains a path from ¢ to
d for each minimal expression of p(c, d). QD

In the spherical case, two opposite chambers are in a unique apartment.

7.11 Retractions Take a building C of type M over R and let ¢, A be a pair consisting of
a chamber ¢ and an apartment A containing it. For each = € C, there is a unique chamber
in A, called the retract of x onto A with center c, denoted by p., a(z), with the property
that p(c, z) = p(c, pc,a())-

Since A is an apartment, there is a strong isometry ¢ : W — C with a(W) = A and
a(l) = c. Now p, 4 is the composite of the morphism of chamber systems = +— p(c,z) (cf.
Corollary 7.8(iv)) and e, so it is a morphism onto A which restricts to the identity on A.
This justifies the name ‘retract’. Observe that p. 4 maps minimal paths onto minimal paths
of the same type. They can be used in proving that buildings of type M can be viewed as
residually connected geometries of Coxeter type M. Example 7.5(ii) deals with a converse
of this result for type A,. In view of Example 7.5(iii) we cannot expect the converse to hold
for the case M = B,,. However, a mild condition on the geometry suffices (cf. [Tits 1981]).
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Each residually connected chamber system of type Eg is a building. Again, this is not true
if Fg is replaced by E7.

7.12 Tits systems Let C be a building of type M over E. Assuming transitivity of a
group G of automorphisms of C on the set of all pairs (¢, A) consisting of a chamber ¢
contained in an apartment A, we obtain a pair B, N of subgroups of G that is known as a
Tits system. Thus fix ¢ € C and an apartment A on ¢, and suppose that G is a chamber
transitive group of type preserving automorphisms of C. Writing B = G,, we can identify
G/ B with the set of all chambers of C. If d is a chamber of C, then, by Theorem 7.10, there
is an apartment containing ¢ and d. Therefore, assuming transitivity of G on the set of all
incident chamber, apartment-pairs, we obtain that gd € A for some g € B; furthermore, by
the same assumption, there is n € Ng(A) with n(gd) = c.

If d represents the coset yB the latter equation is equivalent to ngyB = B, and hence to
y € g-'*n"!B. Consequently, G = BNg(A)B. Furthermore, Write N = Ng(A) for the
setwise stabilizer of A in G and H = Cg(4) for the pointwise stabilizer. Then we have
again by transitivity of G and the fact that Aut C(W, R) coincides with W, N/H = W (M)
and BN N =H.

Putting all this together, we see that any coset gB can be written in the form bwB where
b € B and w = nH represents an element of W = N/H. Thus, the chambers r-adjacent to
B are of the form brB (b € B).

It follows from transitivity of G, on cr*\ {c} that G, = B U BrB. In particular, r ¢
B,Br~'B = BrB and BrBrB C B U BrB. Writing P, = G+, we obtain that C &
C(G/B;{P: | i € I}). Thus if d = yB is the endpoint of a minimal path of type r1,...,m;
starting at c, this path may be described as follows

c= BNbl’r‘lBNbl'l‘lbg’l'zB ~oL .~b17‘1b27‘2 ‘e bt’l'tB =d
™ 2 Tt

so that y € byrybare - -byryB. On the other hand, by what we have seen above, there are
b € B,w € W such that y € bwB. But, then ry -- -7 = p(c,d) = p(B,bwB) = w.

We have seen that, whenever 71 ---7; (r; € R) is a minimal expression for w € W, then
BryBry -+ BryB = BwB. Summarizing, we have:

7.13 Proposition Let C be a thick building admitting a group G of automorphisms. If
G is transitive on the set of all pairs (¢/, A') with ¢’ € C and A’ an apartment containing ¢/,
then the following hold where B = G,, N = Ng(A), H = Cg(A).

(1) B and N are subgroups of G generating the full group G;

(ii) H = BN N is a normal subgroup of N and W = N/H;
(iii) R is a generating set of W satisfying the inclusion rBwB C BwB U BrwB for any

weW,r€R;

(iv) for each r € R, we have rBr~! ¢ B.

Proof (i) This follows from the relation G = BW B.

(i1) is obvious from the above.
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(ii1) If I(rw) = I(w)+1, this follows from the above. Otherwise, there is a minimal expression
w = Tre-- -7y so that (as BrBrB C BU BrB)

BrBwB C BrBrry - 4B = (BrBrB)(BryB--- Br:B)
C (BUBrB)(Bry---m:B) = BrwBU BrBry---m:B = BrwBU BwB.

(iv) If BrBr~! C B, then BrBrB = BrBr~!B = B. But this means that cr*, where ¢ = B,
consists of ¢ and cr only; therefore C is thin. QED

The above properties of a group G are now abstracted from the chamber system setting.

7.14 Definition Let G be a group. A Tits system in G is a quadruple (B, N, W, R) for
which the conditions (i)~(iv) of the above proposition hold. (There is no requirement that
(W, R) be a Coxeter system — it will follow.) Thus, the content of the above proposition is
that a building over R supplied with a group of automorphisms gives rise to a Tits system
provided that it is transitive on the set of all incident chamber, apartment pairs. There is a
converse.

7.15 Theorem Let (B,N,W,R) be a Tits system in the group G. Then
(i) the pair (W, R) is a Coxeter system; for each r € R and w € W, we have I(rw) > I(w)

if and only if Br BwB = BrwB;

(1) if J,K C R, then, for all 7 € R and w € W, we have BrBwB = BrwB if and only if
[(rw) = l(w) + 1. Moreover, B{(J)B{K)B = B{(J){K)B. In particular, Py = B(J)B is
a subgroup of G, and Pr = G, Py = B;

(i) if wy,wy € W satisfy wy # wa, then Bw; B # BwsB;

(iv) if J,K,L C R, then P; 0 (PxPy) = (Py N Px)(Pr 0 Pr) = Prax Pinc.

Proof We first show that R consists of involutions in W. Let » € R. Applying (iii) with
w=r""! yields BrBr~!B C Br~'B U B. In view of (iv) and B C BrBr~!B, this implies

BrBr~!B=Br'BUB. (1)

Inverting the sets at both sides of the equation, we get BrBr~!B = BrB U B, which, again
by use of (iv), together with (1) leads to

BrB = Br~!B. (2)

Applying (iii) with w = r shows BrBrB C BrBU Br?B. On the other hand, (1) and (2)
give

BrBrB = BrBr™!B=BrBUB. (3)
Thus, we must have B = Br?B, i.e. 7> C B. Since 72 C N, by definition, we derive r? =H,
so 72 =1 ¢€ W. Since r = 1 would contradict (iv), it follows that r is an involution of W.
An immediate consequence (inversion of (iii)) is

wBr C BuBUBwrB forallr € Rand w € W. (4)
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‘We now prove

(ii) Obviously, B(J)B(K)B 2 B(J){K)B. We next show B(J)B(J)(K)B C B(J)B(K)B.
Let g € B(J)B(J)(K)B. Then there are ry,...,7q € J such that g € Bry - -7, B{J){(K)B.
If ¢ = 0, then g € B and there is nothing to prove. Otherwise, we have

Bry---rgB{(J){K)B CBry --- rq-1Br({J)(K)B
CBr - rg1 B(J)(K)B

by axiom (iii), whence g € Bry-- 141 B(J)(K)B. By induction on g, it follows that
B(J)B(J)(K)B C B(J)(K)B. But then B(J)B(K)B C B(J)B(J)K)B C B{J)(K)B,
and the first statement of (i) is proved.

Now Py is clearly nonempty and closed under taking inverses. From what we have just seen,
Pj is also closed under multiplication, so it is a subgroup. Finally, Py = B1B = B, and
Pr = BRB=BNB = (B,N) =G, whence (ii).

(iii) Suppose wi,wy € W with w1 # ws. Without loss of generality, we may assume
l{w1) < I(ws). If I{wy) = 0, then Bwy B = BwsB would imply w; € BN N = H, whence
w; = 1 = ws, a contradiction. Thus Bw;B # BwsB and we are done. Let I(wz) < 1.
Then there is an involution 7 € R such that I(rw;) < I(ws). By induction on I(ws) we have
BrwsB # Bw1 B, Bruy B, so Brwy BN BrBw;B = . Now BwiB = BwyB would imply
Brwy BN BrBwy B = {, which is absurd as Brw, B is contained in this intersection. Hence
Bw;B = Bws B, establishing (iii).

(i) For r € R, set C,, = {w € W | BrBwB = BrwB}. We first prove two claims on these
Cs.
C.nrC, =0. (5)
Suppose w € C,. Then BrBrwB = BrBrBwB = BwBUBrwB, so rw € Cy, and w ¢ vC,,
settling (5).
If w € C, and s € R with ws g C,, then rw = ws. (6)

For,
BwB CBwsBsB
CBrBwsBsB (as ws & C,)
CBrBwBsBsB = BrwBsBsB (asw € C,)
=BrwBU BrwBsB (by (3))
=BrwBU BrwsB (by (4)),

so w € {rw,rws} by (iii). But w = rw conflicts with » # 1, so w = rws. This yields
rw = ws as required for (6).

Since, clearly 1 € C,., we have obtained the Hyperplane Condition (vi) of 4.1, so Theorem
4.1 ends the proof of (i).
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(iv) Observe

PN (Px Pr) =B(J)BN B(K)B(L)B =

=B(J)BNB(K)XL)B (by (i)
=B((N)N((KXL)))B (by (iii)
=B((J) N(K)(J) N(L))B (by (i) and 5.2.)
=B((J) N{K))BB({J)N(L))B (by (ii)
=(B(JYBN B(K)B)(B{J)BN B{L)B) (by (iii))
=(Pr N Px)(PyN Pr).

But also

B((J) n(K))BB((J) N (L))B = B(J N K)BB(J N L)B = Psnk Pinz,

in view of 5.2(ii) and (i).
This ends the proof of the theorem. QED

7.16 Definition Let (B, N,W, R) be a Tits system in a group G. Then according to the
theorem (W, R) is a Coxeter system, so there exists a Coxeter matrix M = (M 4)rsc g Such
that (W, R) is of type M. We shall also refer to M as the type of the Tits system. The
chamber system C(B, N, W, R) associated with the Tits system is the chamber system over
R whose chambers are the cosets gB for g € G and in which, for each e € R, the chambers
gB and hB are r-adjacent if and only if BA~1gB C B{(r)B. Observe that this is indeed
a chamber system because if gB,hB and hB,kB are r-adjacent pairs, then by (ii) of the
theorem Bk~'gB C Bk~'hBh~'gB C B{(r)B{r)B = B(r)B.

7.17 Corollary Let C be the chamber system associated with the Tits system (B, N, W, R)
in a group G. Then
(1) C is a thick building of type M;
(i1) the group G acts as a group of type automorphisms (by left multiplication) on C, which
is transitive on set of all incident chamber, apartment pairs.

Proof (i) The chamber system C is of type M. For, if r, s are distinct elements of R, then
the {r, s}-cell containing ¢ = B consists of all chambers in BW(,.,3 B, and by use of Theorem
7.16, it is readily seen that the chamber system induces a generalized m,. ,-gon on this cell.

Next, if B, br1 B, byr1ba79 B, ..., byr1berg - - - b7 B = B is a simple closed path with minimal
type rp -+ 7¢, then, by 11.6.4 (i), B = Bribgry---byr: B = Bryrg---7:B, so that by 11.6.4
(i), ry7rg -+ 74 = 1, proving that the only simple closed path starting at ¢ with minimal
type is the trivial path . Since G is transitive on C, this establishes (i).

(i) Clearly, G is transitive on the set of chambers, and the stabilizer of the chamber B
coincides with B. Set A = NB/B. Then A inherits the chamber system structure from C
by restriction. The map W = N/H — A leads to an isomorphism of chamber systems, and
so establishes that A is isomorphic to C(W, R). Furthermore, N stabilizes A and H fixes A
pointwise, so there is an action of W = N/H on A. The above isomorphism then gives that
N acts transitively on A. QeD
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7.18 Examples (i) Let G be a doubly transitive permutation group on a set Q. Pick two
(distinct) points ¢,¢’ € Qand set A = {¢,c'}. Set B=G. and N = G4. Then BAN =G, »
has index 2in N. Thus N/(BNN) & Z/(2). Using G = BU BrB where r € N induces the
transposition (w,w’) on A (the existence of r is equivalent to double transitivity of G on Q)
it is readily seen that B, N gives rise to a Tits system of type A;1.

(i) Let G = GLn( IF) for some field IF. Taking B to be the subgroup of G consisting of all
invertible upper-diagonal matrices and NV the subgroup of all invertible monomial matrices,
we obtain a Tits system of type A,_1. The geometry of the corresponding chamber system
is the projective geometry of rank n — 1.

(iii) For a nondegenerate polar space of finite rank n all of whose lines have at least three
points, it is possible to prove in a rather elementary way that the automorphism group
satisfies the conditions of Proposition 7.13 in its action on the chamber system described in
Example 7.5(vi), thus giving rise to a Tits system of type B,. This is however an instance
of the following highlights.

7.19 Theorem Let C be a thick building of type a connected diagram M of rankn < co.

(i) (Tits’ classification of buildings of spherical type) If n > 3 and W (M) is finite, then C
corresponds to a Tits system and is known.

(ii) (Bruhat-Tits’ classification of buildings of affine type) If n > 4 and W (M) is affine,
then C corresponds to a Tits system and is known.

Here ‘known’ means that, for given C as in the theorem, there is an explicitly known
construction of a building C’ in terms of algebraic objects (e.g., a field possibly an extension
field, and a vector space, and in (ii) a valuation on a field) such that C = (’.

The proof of (i) is in [Tits 1974]; for the proof of (ii), see [BrTi 1984]. There are,
however far more buildings than those classified by the above theorem. In [Ron 1989] a
description of very general constructions is given.

See [BCN 1989] for an overview of synthetic properties of the geometries G/P for P a
maximal subgroup of the group G containing the subgroup B of a Tits system in G. The
Bruhat order is closely related to the (Zariski) topological structure of reductive algebraic
groups: The closure of BwB in G is the union of all BzB for £ € Bruh(w). The notion
of shelling, related to the Bruhat order, has been used to analyze the topological nature of
buildings, see [BjWa 1982]. In [LakSe 1986] the structure (regarding homogeneous generators
etc.) of the ring of polynomial functions on G/P is studied.

8. Some algorithmic issues

Both from the pure geometric and the Lie group theoretic it is desirable to be able to
compute and to compute efficiently with Coxeter group elements. We shall devote some
attention to the word problem and to computations in the Reflection Representation.

8.1 The word problem In view of Theorem 5.3, the word problem for Coxeter groups
is solvable. For, the following set of rewrite rules provides a solution to the problem of
deciding, when given a word i € I* whether p(i) = 1.
=1 (1<i<n),
iji---=jij--- (1<4,j<n) [both sides of length m;;].
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According to Tits’ algorithm, one applies the rewrite rules of the second kind to i till
one of letters i € I appears in i twice in a row. If it never happens (verifiable in finitely
many steps) the resulting word is reduced and the answer is yes if the result is the empty
word and no otherwise. If it does happen, remove 77 from the word — a rewrite rule of the
first kind — and repeat the procedure (the length of the word has decreased, so termination
is guaranteed).

Let us focus on the complexity of this algorithm. As before, for w € W, let I2, be the
set of all minimal words in I* representing w. The number red(w) = |I%| gives a lower
bound for the complexity of Tits’ algorithm. By [Stan 1984], for W = W(An_1) & Sym,,,
the number red(wg) equals the number of standard Young Tableaux of staircase shape (that
is, one row of each length < n) for which, in turn, a closed expression has been found:

()"

red(wo) = g5 am o1

Using Stirling: n! = v27n(2)™, we see that the expression in the e exponent grows as

(% + (’,;)) log (g) - (’2’“) - i(n — k) log (2k — 1) > (’2‘) zogll;-

k=1

so that the complexity is at least (n/12)(;) in terms of n = min(|R|,1(wo)). Faster methods
are available through the Reflection Representation.

The action of a matrix on a vector involves n® operations (with more sophistication,
the exponent can be brought down to a number exceeding 2). But the action of a reflection
involves only an inner product computation and a vector addition, so is linear in n. Hence
just nl operations are needed for a word i € I* of length I to compute the image p(i)v of a
vector v € IR™.

8.2 Algorithm Computing a minimal word representing w

Reduce

input: w= [s_1, s_2, ..., s_1]

output: a minimal word [s.1, ... , s_ql for w
{ nn = 0;

n = cardinality(R);
t = empty array of vectors of length n;
repeat {
for (j =mn; j <1; j++) {
av = root of the j+1-th reflection in w;
aw = [s sub j, s sub j-1,...,s sub 1]
av = av * aw; /* Weyl action */
for (k = 0; avlk] == 0; k++) ;
if (av[k] < 0) goto reducible;
add result to t;
}
break; /* Weyl group word w has minimal length */
reducible: /* find deletable pair of vectors in t */
for (nn = 0; nn < j; mo++) {
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for (i = 0; i < n & t(on][i] == ~av[il; i++) ;
if (i == n) break;

}

/* adjust w %/

for (i = nn; i < j-1; i++) wl[il = wli+1];

for (i = j-1; i < 1lw; i++) wli] = wli+2];

length(w) = 1 = 1- 2;
}

return w;

3

A blend of 4.1(ii) and 5.1(i) can be used to prove correctness of this algorithm.

8.3 Rewrite systems In order to compare elements of I*, we introduce a linear ordering
< on I* refining the relation | (‘is a divisor of’). For all 1,1',i",j € I'* we require
(i) ifi # € then € < §;

(if) if i’ < i" then ii'j < i1"].

A linear ordering with these properties is called a reduction ordering. The total degree
lexicographic ordering (first according to total degree, then lexicographically) is an example.
The ordering is Noetherian in the sense that each strictly decreasing sequence terminates
(after finitely many steps). A rewrite rule has the form uiv = ui'v with p(i) = p(i') € W
and i > . We say that i reduces to i’ via R if there is a sequence of rewrite rules from
R that, when successively applied to i, yield i’. In order to solve the word problem for the
Coxeter system (W, R), it suffices to find a finite set R of rewrite rules such that any i € I*
reduces to the unique minimal element of p=!(p(i)) via R. Such 2 system is called confluent.

8.4 Examples (i) For M = Hj, the following system R of 7 rewrite rules is confluent with
regard to the total degree-reduction ordering satisfying 1 < 2 < 3.

11 =€ 22=¢ 33=¢
212=121; 31=13; 3232=2323;

321321=232132.

(i) M = A,,so W =Sym, ;. A confluent system is given by

11> € i=1,...,n+1
{ij=>ji 1<j<1-2<n-1,
ii—14-jizi—1ii—1---54+1j 1<j<i<n+1
n? — n equations in total.

(iii) There exists an infinite confluent set of rewrite rules with respect to any reduction
ordering: for each instance ro--- TqT = T1- - T4 of the exchange condition a rewrite rule can
be obtained by turning the side of the equation containing the least expression into the right
hand side of the rewrite rule; take /% to be the collection of all rewrite rules obtained in this
way together with all rewrite rules of the form i = e.
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8.5 Problem Find an efficient complete (possibly infinite) set of rewrite rules for any
Coxeter group. See [LeCh 1986] for an answer in the special case where m; ;> 2 for each
i # j. The solution is: g

{ii=>e 1 1=1,...,n+1
ay---alast(a;”) = sec(ar)ay - q ar=ki; (1<r <)

where first(a1) > sec(a1), and, for all r € {2,...,n ~ 1}, sec(a,) > first(a,), last(a,) #
first(ari1), sec(ari1) = last(al?).

8.6 Problem The conjugacy problem is the quest for an algorithm to determine, for each
input i,1’ € I*, whether p(i) and p(i’) are conjugate. The problem has a solution for Coxeter
systems of type M = (m; ;) with my; > 4for all4,j € I with i # , see [ApSc 1983], [Appel
1984], and [Bezv 1986].

8.7 Generating the elements of W In various applications, it is useful to be able to
generate all elements of the Coxeter group, or those of length bounded by a certain number
N. Suppose we have generated a list of words Iy _, representing all elements of length
N —1. Also assume that for each i € I;_,;, we have recorded all pairs (j,x) € I x I}_,
for which p(ij) = p(x). Then each j € I for which there is no recorded pair of shape (j,x)
will provide a representative ij of an element of length N, together with the record (j,1). It
may happen however that two newly generated words, say ij and i'j' satisfy p(ij) = p(i'y").
But then 5.3.(1) gives the existence of y € I _,,, where m = m; i such that ij = yki;, and

i'j' = yk5; (cf. §5 for the definition of k; ;), so that the recorded data helps to detect the
double occurrences of representatives for p(iz).

Another conceivable way to run through the elements can be furnished by a Hamiltonian
path in the graph (C(W, R), ~), that is a path meeting every vertex once. In [CSW 1989],
Hamilton circuits (paths ending in a neighbor of the starting vertex) for all finite Coxeter
groups are exhibited.

8.8 Generating the weights in a W-orbit As we shall see in the next section, some
computations regarding Lie group representations require the generation of a whole Weyl
group orbit of vectors in the Reflection Representation V' of W. As the Weyl group can
become very large, it would not be wise to store an entire orbit (a regular orbit of W(Es)
has 696729600 elements!). In many cases however, it is not necessary to store the entire
orbit; all that is needed is to enumerate the vectors one by one.

The case M = A, is particularly easy. In fact, the root system can be embedded in
IR™! in such a way that W(4,) & Sym,,, acts by permutations of the coordinates. It
follows that after a suitable linear transformation, the calculation of the W-orbit can be
done simply by generating all permutations of a given finite sequence of integers. Using
lexicographical order, it is not difficult to run through all elements of the orbit using very
little memory. The other classical groups (B, and D,) can be dealt with in a similar manner;
the Weyl group operates by permutations of coordinates and certain sign changes. Again
we can use a lexicographical order to enumerate all vectors of the orbit.

For the types M = Gs, Fy, Eg, B, Eg, the above principle can be used on a suitable
subgroup. By way of example, we take M = E7. Consider the image w € W(E;) under p
of the word 134562453413245676543245613452431. The subgroup of W(E7) generated by w
and p; for i € {1,3,4,5,6, 7} is a reflection subgroup, whence a Coxeter group (cf. 5.4). Its
type is A7. The index of this Weyl subgroup W (4y) is 72. Taking t = p1 p2p3pspspepr, 2 s0-
called Coxeter element (cf. [Bourb 1968]) of Er, and ¢ = papapspst, it can be shown that the
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set X = {1,¢,c,c*}.(t) is a full set of coset representatives. Thus, for any vector v € V, we
have Wv = W(A47) Xv. Consequently, starting with X, we first prevent double occurrences
by creating the set Y of all elements that are minimal (with respect to the lexicographical
ordering in IR® used above) in W(A7)zv for some z € X. Next we enumerate the elements
of W(Aq7)y for each y € Y. This principle has been implemented in the software package
LiE, built at CWI, Amsterdam.

9. Representation Theory of Lie groups

The Weyl groups are the backbone in the structure theory of semi-simple Lie groups.
In this section we briefly review how they are used in the finite-dimensional rational linear
representation theory. The decompositions of restrictions of representations to a closed
reductive Lie subgroups will be our main topic.

9.1 The basic structure of reductive Lie groups The reductive Lie groups and Lie
algebras are well described in various text books, e.g. [Hum 1974], [Var 1984], [Ser 1987].
There are tight relations with the representation theory for reductive algebraic groups in
characteristic 0, see [Spr 1981] and [Jantz 1987]. For algebraic groups of arbitrary character-
istic the representation is far more complicated. Here we shall only deal with groups defined
over the field of complex numbers.

Let G be a connected reductive complex Lie group. Fix a maximal torus 7" and a Borel
subgroup B of G containing T. (All tori are conjugate in G, and so are all Borel subgroups).
Then its derived group [&, G] is semi-simple and its center Z = Z(G) is contained in T', while
G = Z[G,G], and T = (T'N[G,G]).Z. We shall restrict our attention to the case where
[G, G is simply connected, Z(® is the connected component of 1in Z and G = AOB I (eNen
This may always be achieved by replacing G by a suitable cover. The group B gives rise to
a Tits system (B, N, W, R) in G, where N = Ng(T).

Let V be a finite-dimensional complex rational representation of G. Since T is a torus,
there is a basis of V' with respect to which every element of T has diagonal form. Thus
the restriction to T of the character of G on V is a sum of dim V rational linear (i.e., 1-
dimensional) characters. The rational linear characters of 7' form a commutative group A(T)
(written additively); they are usually called weights of G with respect to 7. Note that A(T)
is actually a free Z-module of rank 7, where » = dim T, the Lie rank of G. We shall denote
by t* the image in € of t € T under A € A(G,T). The normalizer N of T' in G permutes
the characters of T pertaining to any representation of G, and the kernel of the action of
N on A(T) coincides with T, so W = N/T acts faithfully on A(G,T). After tensoring with
IR, the additive group A(T) becomes a real vector space on which W acts linearly. There
is a natural decomposition A(T) = A(Z®) @ A(T,), where T, = T N [G,G]; the group W
acts trivially on A(Z(?)) and via the Reflection Representation on T'N[G, G]. Now consider
the Lie algebra g of G. The group G acts on g via the so-called adjoint representation. The
set of all nonzero weights A € A whose eigenspaces g, = {v € g | vt = v (¢*) for all t € T}
are nontrivial is the root system of G with respect to T, notation ®(G,T), or just &. It
coincides with the root system & that arose from the Reflection Representation in Theorem
4.1. The eigenspace t = g, with the trivial weight 0 is the Lie subalgebra corresponding to
T.

The subgroup B of G corresponds to the Borel subalgebra b of g spanned by t and
all g, for @ > 0 in the ordering of 4.1(ii). The roots @ € ® with & > 0 corresponding
to the reflections » € R are called the fundamental roots (with respect to B). Given two
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weights A, 1, we write A < g to indicate that p — ) is a non-negative linear combination of
fundamental roots. This is consistent with the choice of the ordering from 4.1(ii). Suppose
for the sake of presentation that G is semisimple, so that T = T,. The weight lattice AG,T)
has a basis wi,...,wy such that 2B(w;, a;)/B(ay, ;) = é; ;. This is the so-called basis of
fundamental weights. The span INw; +...4+ INw, is denoted by A*(G,T). Its members
are called dominant weights. If V is irreducible, it has a unique highest weight (with respect
to <), with multiplicity 1. Conversely, for each A € A*(G,T), there is a unique rational
finite-dimensional complex representation V with highest weight A (up to isomorphism, of
course); it is denoted by V()).

Let H be a reductive closed Lie subgroup of G. Denote by n and m the Lie ranks of
G and H, respectively. The fact that H is reductive ensures that any finite-dimensional
rational representation of H decomposes into a direct sum of irreducibles. Branching or
restriction is the decomposition into irreducibles of a representation of H that is obtained
by restriction from a highest weight module of G. Let S be a maximal torus of H. Then
there is a maximal torus T of G containing S. Thus, for a weight A = (A\1,...,As) of G,
and a weight 4 = (p1,...,8m) of H, branching is the determination of the multiplicity
(V(1),V(M)|g) of the representation V(i) = V(H, T, u) in V(G, S, A)|g. Let X1,...,Xn be
indeterminates, and write X* for the monomial X{“ oo X2 thus X = X;. We want to
find an explicit description of

Por(X,2) =) (V (), VN m)X*.
M

In the case of the very special reductive subgroup H = T, an explicit form is known.
Write i
52)=5 ) @
acdt

so that §(®) = Y., w;. It is convenient to parametrize the elements of T' by the variables
X1,...,Xn in such a way that (A(X1,...,Xna))* = X* for A € AT.

9.2 Theorem (Weyl’s Character Formula) For each A € A*(G,T), the character of T' (as
a function of X ) on the G-module V(}) is

EwEW sgn(w)X""(“')‘)
X[ Lace- (1- X%

Pgp(X,N) =

where 6 = 6(®).
QeD

Note that A+ (T,T) = A(G, T). Thus, in Pg (X, ) we should expect negative powers
of X.

9.3 Example G = A;. Then AT(G,T)2 IN and
Por(X,m)=X"+X™2+ .+ X> ™+ X™ (me IN).

Let res : A(G,T) — A(H,S) denote the restriction map. The Borel subgroup of
H can be chosen in such a way that, res(c) ¢ ®(H,T)” for each a € ®(G,T)*. Let
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&) = {a € & | res(e) = 0}, ®(G,T)" = & = &N AT(G,T) and Wy the subgroup of
W generated by the reflections with roots in ®,. Then Wj is readily seen to be generated
by fundamental reflections. Thus, by 5.1(iv), each coset in W/W; has a unique represen-
tative in W of minimal length, the set of these representatives is denoted by W°. Write
A for the multiset res(®(G,T)*\ ®0)\ @(H,S)" supplied with the multiplicities m, =
|(®(G,T)*\ &) N res‘l(a)| ~|®(H,S5)" n{a}| for « € A, and let L be the lattice of inte-
gral non-negative linear combinations of elements in A. Kostant’s partition function p4 on
L is given by

T T 5.
Toca(l= Xo)ma gm(ﬁ)x ,

its domain of definition is extended to I ® IR by putting pa(8) = 0 if 8 € L. Finally put

60 = 5(‘1’0) and N
D) = H ((60’“

9.4 Theorem (cf. [Heckman 1980])

V), V) m) = Y sgn(w)D(w(r + 8))palres(w(X + 6)) — (u + res(8))).
weW?°

The theorem can be proved using Weyl’s Character Formula; conversely Weyl’s Formula
is a special case of the theorem. In using this formula for obtaining an explicit answer, one
needs to enumerate the elements of Weyl group orbits.

The book [McPa 1981] is almost entirely devoted to explicit information of this kind.

9.5 Example (i) Let G be a Lie group of type Gs, with root system & and fundamen-
tal roots Bi,Bs, where f; is long and B, is short. There is a subgroup H of type A,
whose root system ®(H,T) consists of the long roots of (G, T); its fundamental roots are
a; = f1 and oy = f1 + 382. We want to give the formal power series Payp(z,y) =
ZA’#(V(/L),V(A)]H)zklykﬂz"lum, where the sums is taken over all A € A+(G,T) and
p € AT(H,T). The restriction map with respect to the bases of fundamental weights is
given by res(1,0) = (1,1) and res(0,1) = (0,1). Thus & is empty, Wy = {1}, 4 is the set
of positive short roots of G and all multiplicities m., are equal to 1, so D=1 and W? =W.
The branching series of G to the subgroup A, is (cf. [CoRu 1990]):

1—yzzu
(1-yu)(1 —zu)(1 —y2)(1 —y)(1 —z2)(1 — zuz)’

The formula in Theorem 9.2 is not the only closed form for characters. The Demazure
Character Formula is another, cf. [Jantz 1987]. It is often more practical to list the multi-
plicities (i.e. coefficients of X*) of dominant weights A: as the character is W-invariant, the
other multiplicities can be obtained from these by the action of W.

9.6 Theorem (Freudenthal's Weight Multiplicity Formula) Suppose A € A*(G,T). The
multiplicity m(p, A) of the weight p € A(G,T)* in V()) is determined by:

1 - ) faA=p
m(p, A) = 22&6@"’ 2o m(p +ia, \) (4 + i, @)
A+EX+8) = (p+6,p+6)

PGLH( z,Y,z, u)

ifA< p

otherwise
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QeD

The formula enables one to compute all dominant weight multiplicities by recursion
with respect to <, starting with the highest weight. Determination of all weights follows by
computation of Weyl group orbits.

There is a converse to the determination of weights of a given representation: given a
multiset A of dominant weights, determine, if possible the multiset B of dominant weights
such that A is the multiset of all dominant weights of the module DpesmsV(B). Such a
procedure is called decomposition of A. Here is the most straightforward method.

9.7 Algorithm decompose A: obtain a multiset B such that A is the set of dominant
multiplicities of the module P4 p mgV(B)
() start with B = §;
(i) find a highest weight a € 4; then V(a) must occur in V with multiplicity m.,
so add « to B with multiplicity ms;

(i1) set D = dominant weights of V' (a);

(ili) put A= A\ D (multiset subtraction) and, if A # @, continue with (i).

It may happen that the multiplicities of the multisets involved become negative, in which case
the algorithm still terminates and gives a virtual G-module decomposition (that is, possibly
mg < 0 for some B € B). This observation is of use in computations of symmetrized tensor
product decompositions by means of Frobenius’ Formula, which involves the decomposition
of the multisets p.A (for p € IN) consisting of all p-multiples of the members of a multiset
A of dominant multiplicities of a G-module.

A very crude way of computing the coefficient (V' (i), V()A)|g) of the branching series
Pg,u(X,)) is by first applying a routine (e.g. the one of 9.6) to compute the multiset of
dominant weights of the G-module V()), next computing their restrictions to .S (using res)
and then decomposing this multiset as an H-module (e.g., by 9.7). There is a vast literature
on the question of how to do a better job in various special cases. Part of the explanation
why it is feasible is that Pg|g(X, \) is a rational function in X (cf. [CoRu 1990]) so that the
behavior is determined by decompositions of the restrictions of V/(A)’s for bounded X € A*.

For generalizations of the classical formulas to the affine Lie groups, see, among others,
[Kac 1985], [Mat 1988] and [Neid 1986].

9.8 Tensor product decompositions Tensoring is a special kind of branching, namely
from G X @G to the diagonal subgroup H isomorphic to G. The most efficient formula known
for the general case is

9.9 Klimyk’s Formula (cf. [Hum 1968])

Po(X, A1) = D mat(ce+ p +6)X3H#H2,
aEA

where B is the unique weight in WA N A*(G,T), A is the multiset of dominant weights of
V()\) with multiplicities mq, and () = (-1)X®) if wp = T and & € ATT (that is, all its
coefficients on the basis wy, .. .,w, are nonzero), and 0 otherwise.

For another approach, see [Vret 1988].

9.10 Examples (i) G = 4; and d = 2. The Clebsch-Gordan formula reads V(m)®@V(n) =
Vim+n)®V(im+n—-2)@...0V(m—n)forallmn€ INwithm>n.
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(i) M = A, The invertible map X — (A1 + -+ + An, A2 + <+ + An, ..., An) sends each
dominant weight to a partition of d = A; +2X3 + - -- +n),. Conversely, to each partition n
of a number d we can assign an irreducible representation, also denoted by 7, of Sym, (cf.
[JaKe 1981]). We fix a natural representation of G on €™. The group Sym, X G acts on
the homogeneous part T¢(C™) of degree d of the tensor algebra of €™: the first component,
(isomorphic to Sym,) via permutation of the d factors, the second diagonally on each of the
d factors. There is a unique irreducible G-module V such that the Sym, X G-module 7 @ V'
occurs in T¢(€™). It is the module with highest weight X. Thus irreducible modules of G
are indexed by partitions. The Littlewood-Richardson rule (cf. [JaKe 1981], [Macd 1979]) is
an algorithm that returns a certain multiset of partitions when given two partitions = and o.
Translating input and output to weights, it gives the tensor product decomposition for the
G-modules corresponding to w and o. See [Litt 1988] and [Koike 1987] for generalizations
to the classical Lie groups (types By, Cn, D).

(iii) Since the work [Dema 1974] (cf. [Jos 1985]), an algebro-geometric treatment of the
representation theory has led to many new results. We mention one. Suppose A,p €
AT(G,T). Recall from 5.1(vi) that there are J, K C R such that the stabilizer Wy of X\
in W coincides with Wy, and similarly W, = Wk for some K C R. Consider the map
n:Djx — AT(G,T) sending w to A + wp (cf. 5.1 and 9.9 for notation). Then, by [Kumar
1989], the following lower bound exists:

V@V (1), VIX+up) 2 In7 (A +wp)].

10. The Hecke algebra

The Hecke algebra is of use in the representation theory of finite groups of Lie type,
for instance by decomposing the representation of such a group induced from the trivial one
of a Borel subgroup into irreducibles. It also arose in the study of finite buildings. But a
renewed interest in Hecke algebras came about as a consequence of the work of Kazhdan
& Lusztig [KaLu 1979]. Here, we merely introduce the basic notions and point out some
relevant literature. [Curtis 1987] provides another brief overview. More elaborate treatments
can be found in [Cart 1985], [CIK 1972], [Lusz 1984], and [MaSp 1988].

Choose a forma) parameter ¢ and set g = t2. The ring of coefficients we shall work with
is A= Z[t,t7']. The Hecke algebra is the free A-module with basis {@.}wew supplied with
the multiplication determined by

= ¢ Orw if l(rw) =l(w)+1 .
o = { (@ = Daw+gary ifl(rw)=l(w)—1 " ERwEW)

Thus, H has unit a; and zero-divisors: (a, + 1)(a, — ¢) = 0. But the a,, are invertible: for
7 € R the element o' = g~ la, + (¢7! ~ 1) satisfies a7la, = a;, so for arbitrary w € W
with reduced decomposition w = uv, the inverse is a3 = a7'a7!. In order to write these
inverses in terms of the standard basis, we define the elements R, € A by

a‘;-}l = Z Sg(m y)q—l(y)Rz,'yam-
z
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The following recursive relations help to compute the inverses explicitly:

0 ifz Ly
1 ifz=y

Repy =< Rrary ifre<zandry<y
Raryr ifer<zandyr<y

(@=1VRrzy+qRrzpy frz>zandry<y.

Observe that R,y is a polynomial in g of degree I(y) — I(z).

The choice of ¢ = ¢1/? as a parameter rather than g is related to the isomorphism,
established in [Lusz 1981], between H ® Q(t) and the group algebra of W over Q(t) in the
case where W is a Weyl group with connected diagram M, a result that is not true (for
M = Ej3) over Q(g). An explicit presentation of this isomorphism in the case M = IJ*
already leads to vast computations, see [Fak 1989].

For a € C, denote by €, the A-algebra determined by the morphism 4 — € that
substitutes t by «; and similarly for Z in place of €. Then H ®4 C, is a C-algebra, and
the ring H @4 Z; is isomorphic to the group ring of W over Z.

10.1 Theorem (Semisimplicity, cf. [GyUn 1989]) Suppose W is finite with connected dia-
gram. Let @ € C. Then the C-algebra H® 4 C, is semi-simple if and only if 3, .y Q2w =
0.

10.2 Example Let C be a finite building of type M. Construct the vector space V =
.c Re of dimension |C|. For each type r € R, the endomorphism o, of V' determined by
ar(c) = Zd&-m_.,#c d for ¢ € C satisfies o = (¢, — 1)a, + g-idy, where ¢, + 1 is the size of
an r-cell. Also, for w € W, the expression o, - a,, does not depend on the choice of the
reduced expression 7 - -- 7 for w, so that we refer to it by a.,. Hence if all panels have the
same size g, (independent of 7 € R), we have a representation in V of H ®4 Z,_. In [Lusz
1983] a treatment of the Hecke algebra in which the parameter ¢, may vary is given. In this
guise, the Hecke algebra plays a réle in Kilmoyer and Solomon’s proof of the Feit-Higman
Theorem (cf. [BCN 1989]).

10.3 W-graphs A tool in the construction of representations of the Hecke algebra is the
so-called W-graph. This is a triple (X, I, p) consisting of a set X, a map I : X — P(R),
and a function p : X X X — Z, such that X is the basis of a free A-module affording a
representation of H via

—z ifr e I(z)
a T = .
€ 9z + 3 e x rer(y) LY, )y  otherwise.

The specification ¢t — 1 turns the representation involved into a Coxeter group represen-
tation. In [Gyoja 1984] it is shown that any complex representation of a Weyl group with
connected diagram can be constructed by means of a W-graph. In [Heck 1988)] (techni-
cally involved) necessary and sufficient conditions on (W,I,pu) are given for the triple to
be a W-graph. In order to find smaller modules from the representations defined by a
W-graph I' = (X,I, 1), a preorder <r is introduced on X in the following way: z <p y
if there is a sequence ¢ = zg,...,z; = y with p(z:, z:41) # 0 and I(z:) € I(ziy1) for
each ¢ € {0,...,t — 1}. Observe that z <r y implies that = occurs in the H-submodule of
€D, cx Az generated by y. We let ~p stand for the equivalence relation given by z ~p y if
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and only if £ <p ¥ <r z, and call the equivalence classes I'-cells. Bach I'-cell Y gives rise to
a W-graph, by restriction of I and p.

The ring automorphism a — @ (a € A) determined by ¥ = ¢! is an involution, which
can be extended to an involution on H, also written z — Z, by requiring @y, = a;l_l. In

[KaLu 1979], the existence of a ~-fixed basis is established through the following result.

10.4 Theorem (Kazhdan-Lusztig polynomials) For any w € W there is a unique element
¢y € H such that
Cw = Cy (1a)

Cow = Z sg(y w)t’("’)_m(”)may (1b)
y<w
where P, ., € A is a polynomial in g of degree at most (I(w) — I(y) — 1)/2 for y < w and
Pyn=1.

As for the proof, the uniqueness of the Py follows from consideration of the identity

Pa:,y = Z ql(c)_l(y)Rz,wa,'m
weW

which can be derived from equation (la) by substituting (1b) at both sides and use of the
polynomials R;y. Suppose uniqueness of the P, , has been settled for all w € W with
= < w < y; then the above identity yields

Py— ql(m)“l(y)pz’y = Z ql(c)-l(y)Rm’wpw,y’

zlw

and the degree arguments show that P, , is uniquely determined.

As for existence, first consider the following relation regarding elements z,w € W:

z < w if z <w, l(w) —I(z) is odd, and P, ,, has degree I(w) —I(z) —1in ¢

For z < w write pu(z,w) for the coefficient of t{(®)-U=)~1 in P, .. Thus p(z,w) is a
nonzero integer.

Next, note that ¢, = a. = 1. We proceed with the construction of ¢,, and the P, ,, for
y < w by induction on I(w). Thus, let w € W, and suppose P, , and z < w are well defined
by the above rules for 2 < w. Then for 7 € R with rw > w, the relation

Crw = (t_la“" - t)cw - Z /"'(z:w)cz:

rz<z<w

defines ¢y, and can be shown to satisfy (1a) and (1b) by use of the induction hypothesis.
(For instance, (la) comes down to t~la, — t = t~'a, — t, which is a direct consequence of
the multiplication rule a2 = (g — 1)a, +q.) QeD

For w € W, put L(w) = {r € R| rw < w}. Here are two more relations regarding
elements z,w € W:

z <t w if there is a sequence z = z,...,z; = w with z; —z;,; and L(z:) € L(zi11)
for each i € {0,...,t -~ 1};
z <prw if there is a sequence ¢ = x4,z ..., 2, = w with z; <, z;y1 and m;’l <z :n;,,ll

for each 1 € {0,...,t ~1}. Forr € R and w € W, the following relations hold

o = —Cy frw<w
T QCw + i +13, o o (T w)e, i rw > w
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Therefore, the triple ' = (W, L, u) is a W-graph. The corresponding preorder <r coincides
with <r. Its cells are called left cells.

By considering the opposite group W?° (again a Coxeter group of type M) of W acting
on the right, the set W can actually be turned into a W x W0-graph. Its preorder is <z,
its cells are called two sided cells.

10.5 Examples (i) M = A.. The Robinson-Schensted correspondence is a bijective map
(effective!) between the set of all pairs of Standard Young Tableaux of size n+ 1 having the
same shape and W. Via this correspondence, a two-sided cell consists of all permutations
in Sym, ,; having the the same shape of Young Tableau, and a left cell consists of all
permutations in Sym,, , having the same first Young Tableau. See [Kerov 1985] for the

symmetric groups on at most 6 letters, and [LaSch 1982] for a combinatorial approach to
the Kazhdan-Lusztig polynomials.

(ii) Affine Weyl groups have a finite number of left (and right) cells (cf. [Lusz 1987]). This
is not true for arbitrary Coxeter groups, not even if |R| = 3, see [Béd 1989]. A number of
small rank cases have been dealt with explicitly. See [Lawt 1989], [Shi 1986, 1989] for a cell
decomposition in case of type A, using a generalization of Robinson-Schensted. Furthermore,
[Béd 1986] for Ca, [Du 1988-90] for several other low rank types.

10.6 Explicit results The polynomials P, ., are hard to compute. The search for directer
ways of determining the cells has received much attention. See [GaLa 1988] for a discussion.
In [Alvis 1987] the results of a computation of left cells for W(H,) are given.

10.7 Remarks The Kazhdan-Lusztig conjectures (brought forward in [KaLu 1979]) de-
scribe how the Py ,,(1) can be interpreted in terms of multiplicities in Verma modules; they
have been established by [BrKa 1981] and [BeBe 1981]. See [BaVo 1982] and [KaLu 1987]
for different applications.

Analogously to the way the Hecke algebra of a group of Lie type is related to the variety
G/ B, there is a version for G/P where P is a (so-called parabolic) subgroup of G containing
B. See [Deo 1987a] for a development of Kazhdan-Lusztig polynomials in this context.
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Added in proof. A few months after this manuscript had been finished I discovered that a
new book on Coxeter groups had come into print: “Reflection groups and Coxeter groups”
by J.E. Humphreys (Cambridge University Press, 1990). It gives a transparent and extensive
account of the basic theory and some of the topics dealt with in this paper (such as Hecke

algebras).



